Source code for dpctl.tensor._type_utils

#                      Data Parallel Control (dpctl)
#
# Copyright 2020-2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import numpy as np

import dpctl.tensor as dpt
import dpctl.tensor._tensor_impl as ti


def _all_data_types(_fp16, _fp64):
    _non_fp_types = [
        dpt.bool,
        dpt.int8,
        dpt.uint8,
        dpt.int16,
        dpt.uint16,
        dpt.int32,
        dpt.uint32,
        dpt.int64,
        dpt.uint64,
    ]
    if _fp64:
        if _fp16:
            return _non_fp_types + [
                dpt.float16,
                dpt.float32,
                dpt.float64,
                dpt.complex64,
                dpt.complex128,
            ]
        else:
            return _non_fp_types + [
                dpt.float32,
                dpt.float64,
                dpt.complex64,
                dpt.complex128,
            ]
    else:
        if _fp16:
            return _non_fp_types + [
                dpt.float16,
                dpt.float32,
                dpt.complex64,
            ]
        else:
            return _non_fp_types + [
                dpt.float32,
                dpt.complex64,
            ]


def _is_maximal_inexact_type(dt: dpt.dtype, _fp16: bool, _fp64: bool):
    """
    Return True if data type `dt` is the
    maximal size inexact data type
    """
    if _fp64:
        return dt in [dpt.float64, dpt.complex128]
    return dt in [dpt.float32, dpt.complex64]


def _dtype_supported_by_device_impl(
    dt: dpt.dtype, has_fp16: bool, has_fp64: bool
) -> bool:
    if has_fp64:
        if not has_fp16:
            if dt is dpt.float16:
                return False
    else:
        if dt is dpt.float64:
            return False
        elif dt is dpt.complex128:
            return False
        if not has_fp16 and dt is dpt.float16:
            return False
    return True


def _can_cast(
    from_: dpt.dtype, to_: dpt.dtype, _fp16: bool, _fp64: bool, casting="safe"
) -> bool:
    """
    Can `from_` be cast to `to_` safely on a device with
    fp16 and fp64 aspects as given?
    """
    if not _dtype_supported_by_device_impl(to_, _fp16, _fp64):
        return False
    can_cast_v = np.can_cast(from_, to_, casting=casting)  # ask NumPy
    if _fp16 and _fp64:
        return can_cast_v
    if not can_cast_v:
        if (
            from_.kind in "biu"
            and to_.kind in "fc"
            and _is_maximal_inexact_type(to_, _fp16, _fp64)
        ):
            return True

    return can_cast_v


def _to_device_supported_dtype_impl(dt, has_fp16, has_fp64):
    if has_fp64:
        if not has_fp16:
            if dt is dpt.float16:
                return dpt.float32
    else:
        if dt is dpt.float64:
            return dpt.float32
        elif dt is dpt.complex128:
            return dpt.complex64
        if not has_fp16 and dt is dpt.float16:
            return dpt.float32
    return dt


def _to_device_supported_dtype(dt, dev):
    has_fp16 = dev.has_aspect_fp16
    has_fp64 = dev.has_aspect_fp64

    return _to_device_supported_dtype_impl(dt, has_fp16, has_fp64)


def _acceptance_fn_default_unary(arg_dtype, ret_buf_dt, res_dt, sycl_dev):
    return True


def _acceptance_fn_reciprocal(arg_dtype, buf_dt, res_dt, sycl_dev):
    # if the kind of result is different from the kind of input, we use the
    # default floating-point dtype for the resulting kind. This guarantees
    # alignment of reciprocal and divide output types.
    if buf_dt.kind != arg_dtype.kind:
        default_dt = _get_device_default_dtype(res_dt.kind, sycl_dev)
        if res_dt == default_dt:
            return True
        else:
            return False
    else:
        return True


def _acceptance_fn_negative(arg_dtype, buf_dt, res_dt, sycl_dev):
    # negative is not defined for boolean data type
    if arg_dtype.char == "?":
        raise ValueError(
            "The `negative` function, the `-` operator, is not supported "
            "for inputs of data type bool, use the `~` operator or the "
            "`logical_not` function instead"
        )
    else:
        return True


def _acceptance_fn_subtract(
    arg1_dtype, arg2_dtype, buf1_dt, buf2_dt, res_dt, sycl_dev
):
    # subtract is not defined for boolean data type
    if arg1_dtype.char == "?" and arg2_dtype.char == "?":
        raise ValueError(
            "The `subtract` function, the `-` operator, is not supported "
            "for inputs of data type bool, use the `^` operator,  the "
            "`bitwise_xor`, or the `logical_xor` function instead"
        )
    else:
        return True


def _find_buf_dtype(arg_dtype, query_fn, sycl_dev, acceptance_fn):
    res_dt = query_fn(arg_dtype)
    if res_dt:
        return None, res_dt

    _fp16 = sycl_dev.has_aspect_fp16
    _fp64 = sycl_dev.has_aspect_fp64
    all_dts = _all_data_types(_fp16, _fp64)
    for buf_dt in all_dts:
        if _can_cast(arg_dtype, buf_dt, _fp16, _fp64):
            res_dt = query_fn(buf_dt)
            if res_dt:
                acceptable = acceptance_fn(arg_dtype, buf_dt, res_dt, sycl_dev)
                if acceptable:
                    return buf_dt, res_dt
                else:
                    continue

    return None, None


def _get_device_default_dtype(dt_kind, sycl_dev):
    if dt_kind == "b":
        return dpt.dtype(ti.default_device_bool_type(sycl_dev))
    elif dt_kind == "i":
        return dpt.dtype(ti.default_device_int_type(sycl_dev))
    elif dt_kind == "u":
        return dpt.dtype(ti.default_device_uint_type(sycl_dev))
    elif dt_kind == "f":
        return dpt.dtype(ti.default_device_fp_type(sycl_dev))
    elif dt_kind == "c":
        return dpt.dtype(ti.default_device_complex_type(sycl_dev))
    raise RuntimeError


def _acceptance_fn_default_binary(
    arg1_dtype, arg2_dtype, ret_buf1_dt, ret_buf2_dt, res_dt, sycl_dev
):
    return True


def _acceptance_fn_divide(
    arg1_dtype, arg2_dtype, ret_buf1_dt, ret_buf2_dt, res_dt, sycl_dev
):
    # both are being promoted, if the kind of result is
    # different than the kind of original input dtypes,
    # we use default dtype for the resulting kind.
    # This covers, e.g. (array_dtype_i1 / array_dtype_u1)
    # result of which in divide is double (in NumPy), but
    # regular type promotion rules peg at float16
    if (ret_buf1_dt.kind != arg1_dtype.kind) and (
        ret_buf2_dt.kind != arg2_dtype.kind
    ):
        default_dt = _get_device_default_dtype(res_dt.kind, sycl_dev)
        if res_dt == default_dt:
            return True
        else:
            return False
    else:
        return True


def _find_buf_dtype2(arg1_dtype, arg2_dtype, query_fn, sycl_dev, acceptance_fn):
    res_dt = query_fn(arg1_dtype, arg2_dtype)
    if res_dt:
        return None, None, res_dt

    _fp16 = sycl_dev.has_aspect_fp16
    _fp64 = sycl_dev.has_aspect_fp64
    all_dts = _all_data_types(_fp16, _fp64)
    for buf1_dt in all_dts:
        for buf2_dt in all_dts:
            if _can_cast(arg1_dtype, buf1_dt, _fp16, _fp64) and _can_cast(
                arg2_dtype, buf2_dt, _fp16, _fp64
            ):
                res_dt = query_fn(buf1_dt, buf2_dt)
                if res_dt:
                    ret_buf1_dt = None if buf1_dt == arg1_dtype else buf1_dt
                    ret_buf2_dt = None if buf2_dt == arg2_dtype else buf2_dt
                    if ret_buf1_dt is None or ret_buf2_dt is None:
                        return ret_buf1_dt, ret_buf2_dt, res_dt
                    else:
                        acceptable = acceptance_fn(
                            arg1_dtype,
                            arg2_dtype,
                            ret_buf1_dt,
                            ret_buf2_dt,
                            res_dt,
                            sycl_dev,
                        )
                        if acceptable:
                            return ret_buf1_dt, ret_buf2_dt, res_dt
                        else:
                            continue

    return None, None, None


def _find_buf_dtype_in_place_op(arg1_dtype, arg2_dtype, query_fn, sycl_dev):
    res_dt = query_fn(arg1_dtype, arg2_dtype)
    if res_dt:
        return None, res_dt

    _fp16 = sycl_dev.has_aspect_fp16
    _fp64 = sycl_dev.has_aspect_fp64
    if _can_cast(arg2_dtype, arg1_dtype, _fp16, _fp64, casting="same_kind"):
        res_dt = query_fn(arg1_dtype, arg1_dtype)
        if res_dt:
            return arg1_dtype, res_dt

    return None, None


class WeakBooleanType:
    "Python type representing type of Python boolean objects"

    def __init__(self, o):
        self.o_ = o

    def get(self):
        return self.o_


class WeakIntegralType:
    "Python type representing type of Python integral objects"

    def __init__(self, o):
        self.o_ = o

    def get(self):
        return self.o_


class WeakFloatingType:
    """Python type representing type of Python floating point objects"""

    def __init__(self, o):
        self.o_ = o

    def get(self):
        return self.o_


class WeakComplexType:
    """Python type representing type of Python complex floating point objects"""

    def __init__(self, o):
        self.o_ = o

    def get(self):
        return self.o_


def _weak_type_num_kind(o):
    _map = {"?": 0, "i": 1, "f": 2, "c": 3}
    if isinstance(o, WeakBooleanType):
        return _map["?"]
    if isinstance(o, WeakIntegralType):
        return _map["i"]
    if isinstance(o, WeakFloatingType):
        return _map["f"]
    if isinstance(o, WeakComplexType):
        return _map["c"]
    raise TypeError(
        f"Unexpected type {o} while expecting "
        "`WeakBooleanType`, `WeakIntegralType`,"
        "`WeakFloatingType`, or `WeakComplexType`."
    )


def _strong_dtype_num_kind(o):
    _map = {"b": 0, "i": 1, "u": 1, "f": 2, "c": 3}
    if not isinstance(o, dpt.dtype):
        raise TypeError
    k = o.kind
    if k in _map:
        return _map[k]
    raise ValueError(f"Unrecognized kind {k} for dtype {o}")


def _is_weak_dtype(dtype):
    return isinstance(
        dtype,
        (WeakBooleanType, WeakIntegralType, WeakFloatingType, WeakComplexType),
    )


def _resolve_weak_types(o1_dtype, o2_dtype, dev):
    "Resolves weak data type per NEP-0050"
    if _is_weak_dtype(o1_dtype):
        if _is_weak_dtype(o2_dtype):
            raise ValueError
        o1_kind_num = _weak_type_num_kind(o1_dtype)
        o2_kind_num = _strong_dtype_num_kind(o2_dtype)
        if o1_kind_num > o2_kind_num:
            if isinstance(o1_dtype, WeakIntegralType):
                return dpt.dtype(ti.default_device_int_type(dev)), o2_dtype
            if isinstance(o1_dtype, WeakComplexType):
                if o2_dtype is dpt.float16 or o2_dtype is dpt.float32:
                    return dpt.complex64, o2_dtype
                return (
                    _to_device_supported_dtype(dpt.complex128, dev),
                    o2_dtype,
                )
            return _to_device_supported_dtype(dpt.float64, dev), o2_dtype
        else:
            return o2_dtype, o2_dtype
    elif _is_weak_dtype(o2_dtype):
        o1_kind_num = _strong_dtype_num_kind(o1_dtype)
        o2_kind_num = _weak_type_num_kind(o2_dtype)
        if o2_kind_num > o1_kind_num:
            if isinstance(o2_dtype, WeakIntegralType):
                return o1_dtype, dpt.dtype(ti.default_device_int_type(dev))
            if isinstance(o2_dtype, WeakComplexType):
                if o1_dtype is dpt.float16 or o1_dtype is dpt.float32:
                    return o1_dtype, dpt.complex64
                return o1_dtype, _to_device_supported_dtype(dpt.complex128, dev)
            return (
                o1_dtype,
                _to_device_supported_dtype(dpt.float64, dev),
            )
        else:
            return o1_dtype, o1_dtype
    else:
        return o1_dtype, o2_dtype


def _resolve_weak_types_all_py_ints(o1_dtype, o2_dtype, dev):
    "Resolves weak data type per NEP-0050 for comparisons and"
    " divide, where result type is known and special behavior"
    "is needed to handle mixed integer kinds and Python integers"
    "without overflow"
    if _is_weak_dtype(o1_dtype):
        if _is_weak_dtype(o2_dtype):
            raise ValueError
        o1_kind_num = _weak_type_num_kind(o1_dtype)
        o2_kind_num = _strong_dtype_num_kind(o2_dtype)
        if o1_kind_num > o2_kind_num:
            if isinstance(o1_dtype, WeakIntegralType):
                return dpt.dtype(ti.default_device_int_type(dev)), o2_dtype
            if isinstance(o1_dtype, WeakComplexType):
                if o2_dtype is dpt.float16 or o2_dtype is dpt.float32:
                    return dpt.complex64, o2_dtype
                return (
                    _to_device_supported_dtype(dpt.complex128, dev),
                    o2_dtype,
                )
            return _to_device_supported_dtype(dpt.float64, dev), o2_dtype
        else:
            if o1_kind_num == o2_kind_num and isinstance(
                o1_dtype, WeakIntegralType
            ):
                o1_val = o1_dtype.get()
                o2_iinfo = dpt.iinfo(o2_dtype)
                if (o1_val < o2_iinfo.min) or (o1_val > o2_iinfo.max):
                    return dpt.dtype(np.min_scalar_type(o1_val)), o2_dtype
            return o2_dtype, o2_dtype
    elif _is_weak_dtype(o2_dtype):
        o1_kind_num = _strong_dtype_num_kind(o1_dtype)
        o2_kind_num = _weak_type_num_kind(o2_dtype)
        if o2_kind_num > o1_kind_num:
            if isinstance(o2_dtype, WeakIntegralType):
                return o1_dtype, dpt.dtype(ti.default_device_int_type(dev))
            if isinstance(o2_dtype, WeakComplexType):
                if o1_dtype is dpt.float16 or o1_dtype is dpt.float32:
                    return o1_dtype, dpt.complex64
                return o1_dtype, _to_device_supported_dtype(dpt.complex128, dev)
            return (
                o1_dtype,
                _to_device_supported_dtype(dpt.float64, dev),
            )
        else:
            if o1_kind_num == o2_kind_num and isinstance(
                o2_dtype, WeakIntegralType
            ):
                o2_val = o2_dtype.get()
                o1_iinfo = dpt.iinfo(o1_dtype)
                if (o2_val < o1_iinfo.min) or (o2_val > o1_iinfo.max):
                    return o1_dtype, dpt.dtype(np.min_scalar_type(o2_val))
            return o1_dtype, o1_dtype
    else:
        return o1_dtype, o2_dtype


def _resolve_one_strong_two_weak_types(st_dtype, dtype1, dtype2, dev):
    "Resolves weak data types per NEP-0050,"
    "where the second and third arguments are"
    "permitted to be weak types"
    if _is_weak_dtype(st_dtype):
        raise ValueError
    if _is_weak_dtype(dtype1):
        if _is_weak_dtype(dtype2):
            kind_num1 = _weak_type_num_kind(dtype1)
            kind_num2 = _weak_type_num_kind(dtype2)
            st_kind_num = _strong_dtype_num_kind(st_dtype)

            if kind_num1 > st_kind_num:
                if isinstance(dtype1, WeakIntegralType):
                    ret_dtype1 = dpt.dtype(ti.default_device_int_type(dev))
                elif isinstance(dtype1, WeakComplexType):
                    if st_dtype is dpt.float16 or st_dtype is dpt.float32:
                        ret_dtype1 = dpt.complex64
                    ret_dtype1 = _to_device_supported_dtype(dpt.complex128, dev)
                else:
                    ret_dtype1 = _to_device_supported_dtype(dpt.float64, dev)
            else:
                ret_dtype1 = st_dtype

            if kind_num2 > st_kind_num:
                if isinstance(dtype2, WeakIntegralType):
                    ret_dtype2 = dpt.dtype(ti.default_device_int_type(dev))
                elif isinstance(dtype2, WeakComplexType):
                    if st_dtype is dpt.float16 or st_dtype is dpt.float32:
                        ret_dtype2 = dpt.complex64
                    ret_dtype2 = _to_device_supported_dtype(dpt.complex128, dev)
                else:
                    ret_dtype2 = _to_device_supported_dtype(dpt.float64, dev)
            else:
                ret_dtype2 = st_dtype

            return ret_dtype1, ret_dtype2

        max_dt_num_kind, max_dtype = max(
            [
                (_strong_dtype_num_kind(st_dtype), st_dtype),
                (_strong_dtype_num_kind(dtype2), dtype2),
            ]
        )
        dt1_kind_num = _weak_type_num_kind(dtype1)
        if dt1_kind_num > max_dt_num_kind:
            if isinstance(dtype1, WeakIntegralType):
                return dpt.dtype(ti.default_device_int_type(dev)), dtype2
            if isinstance(dtype1, WeakComplexType):
                if max_dtype is dpt.float16 or max_dtype is dpt.float32:
                    return dpt.complex64, dtype2
                return (
                    _to_device_supported_dtype(dpt.complex128, dev),
                    dtype2,
                )
            return _to_device_supported_dtype(dpt.float64, dev), dtype2
        else:
            return max_dtype, dtype2
    elif _is_weak_dtype(dtype2):
        max_dt_num_kind, max_dtype = max(
            [
                (_strong_dtype_num_kind(st_dtype), st_dtype),
                (_strong_dtype_num_kind(dtype1), dtype1),
            ]
        )
        dt2_kind_num = _weak_type_num_kind(dtype2)
        if dt2_kind_num > max_dt_num_kind:
            if isinstance(dtype2, WeakIntegralType):
                return dtype1, dpt.dtype(ti.default_device_int_type(dev))
            if isinstance(dtype2, WeakComplexType):
                if max_dtype is dpt.float16 or max_dtype is dpt.float32:
                    return dtype1, dpt.complex64
                return (
                    dtype1,
                    _to_device_supported_dtype(dpt.complex128, dev),
                )
            return dtype1, _to_device_supported_dtype(dpt.float64, dev)
        else:
            return dtype1, max_dtype
    else:
        # both are strong dtypes
        # return unmodified
        return dtype1, dtype2


def _resolve_one_strong_one_weak_types(st_dtype, dtype, dev):
    "Resolves one weak data type with one strong data type per NEP-0050"
    if _is_weak_dtype(st_dtype):
        raise ValueError
    if _is_weak_dtype(dtype):
        st_kind_num = _strong_dtype_num_kind(st_dtype)
        kind_num = _weak_type_num_kind(dtype)
        if kind_num > st_kind_num:
            if isinstance(dtype, WeakIntegralType):
                return dpt.dtype(ti.default_device_int_type(dev))
            if isinstance(dtype, WeakComplexType):
                if st_dtype is dpt.float16 or st_dtype is dpt.float32:
                    return dpt.complex64
                return _to_device_supported_dtype(dpt.complex128, dev)
            return _to_device_supported_dtype(dpt.float64, dev)
        else:
            return st_dtype
    else:
        return dtype


class finfo_object:
    """
    `numpy.finfo` subclass which returns Python floating-point scalars for
    `eps`, `max`, `min`, and `smallest_normal` attributes.
    """

    def __init__(self, dtype):
        _supported_dtype([dpt.dtype(dtype)])
        self._finfo = np.finfo(dtype)

    @property
    def bits(self):
        """
        number of bits occupied by the real-valued floating-point data type.
        """
        return int(self._finfo.bits)

    @property
    def smallest_normal(self):
        """
        smallest positive real-valued floating-point number with full
        precision.
        """
        return float(self._finfo.smallest_normal)

    @property
    def tiny(self):
        """an alias for `smallest_normal`"""
        return float(self._finfo.tiny)

    @property
    def eps(self):
        """
        difference between 1.0 and the next smallest representable real-valued
        floating-point number larger than 1.0 according to the IEEE-754
        standard.
        """
        return float(self._finfo.eps)

    @property
    def epsneg(self):
        """
        difference between 1.0 and the next smallest representable real-valued
        floating-point number smaller than 1.0 according to the IEEE-754
        standard.
        """
        return float(self._finfo.epsneg)

    @property
    def min(self):
        """smallest representable real-valued number."""
        return float(self._finfo.min)

    @property
    def max(self):
        "largest representable real-valued number."
        return float(self._finfo.max)

    @property
    def resolution(self):
        "the approximate decimal resolution of this type."
        return float(self._finfo.resolution)

    @property
    def precision(self):
        """
        the approximate number of decimal digits to which this kind of
        floating point type is precise.
        """
        return float(self._finfo.precision)

    @property
    def dtype(self):
        """
        the dtype for which finfo returns information. For complex input, the
        returned dtype is the associated floating point dtype for its real and
        complex components.
        """
        return self._finfo.dtype

    def __str__(self):
        return self._finfo.__str__()

    def __repr__(self):
        return self._finfo.__repr__()


[docs]def can_cast(from_, to, /, *, casting="safe") -> bool: """ can_cast(from, to, casting="safe") Determines if one data type can be cast to another data type according \ to Type Promotion Rules. Args: from_ (Union[usm_ndarray, dtype]): source data type. If `from_` is an array, a device-specific type promotion rules apply. to (dtype): target data type casting (Optional[str]): controls what kind of data casting may occur. * "no" means data types should not be cast at all. * "safe" means only casts that preserve values are allowed. * "same_kind" means only safe casts and casts within a kind, like `float64` to `float32`, are allowed. * "unsafe" means any data conversion can be done. Default: `"safe"`. Returns: bool: Gives `True` if cast can occur according to the casting rule. Device-specific type promotion rules take into account which data type are and are not supported by a specific device. """ if isinstance(to, dpt.usm_ndarray): raise TypeError(f"Expected `dpt.dtype` type, got {type(to)}.") dtype_to = dpt.dtype(to) _supported_dtype([dtype_to]) if isinstance(from_, dpt.usm_ndarray): dtype_from = from_.dtype return _can_cast( dtype_from, dtype_to, from_.sycl_device.has_aspect_fp16, from_.sycl_device.has_aspect_fp64, casting=casting, ) else: dtype_from = dpt.dtype(from_) _supported_dtype([dtype_from]) # query casting as if all dtypes are supported return _can_cast(dtype_from, dtype_to, True, True, casting=casting)
[docs]def result_type(*arrays_and_dtypes): """ result_type(*arrays_and_dtypes) Returns the dtype that results from applying the Type Promotion Rules to \ the arguments. Args: arrays_and_dtypes (Union[usm_ndarray, dtype]): An arbitrary length sequence of usm_ndarray objects or dtypes. Returns: dtype: The dtype resulting from an operation involving the input arrays and dtypes. """ dtypes = [] devices = [] weak_dtypes = [] for arg_i in arrays_and_dtypes: if isinstance(arg_i, dpt.usm_ndarray): devices.append(arg_i.sycl_device) dtypes.append(arg_i.dtype) elif isinstance(arg_i, int): weak_dtypes.append(WeakIntegralType(arg_i)) elif isinstance(arg_i, float): weak_dtypes.append(WeakFloatingType(arg_i)) elif isinstance(arg_i, complex): weak_dtypes.append(WeakComplexType(arg_i)) elif isinstance(arg_i, bool): weak_dtypes.append(WeakBooleanType(arg_i)) else: dt = dpt.dtype(arg_i) _supported_dtype([dt]) dtypes.append(dt) has_fp16 = True has_fp64 = True target_dev = None if devices: inspected = False for d in devices: if inspected: unsame_fp16_support = d.has_aspect_fp16 != has_fp16 unsame_fp64_support = d.has_aspect_fp64 != has_fp64 if unsame_fp16_support or unsame_fp64_support: raise ValueError( "Input arrays reside on devices " "with different device supports; " "unable to determine which " "device-specific type promotion rules " "to use." ) else: has_fp16 = d.has_aspect_fp16 has_fp64 = d.has_aspect_fp64 target_dev = d inspected = True if not (has_fp16 and has_fp64): for dt in dtypes: if not _dtype_supported_by_device_impl(dt, has_fp16, has_fp64): raise ValueError( f"Argument {dt} is not supported by the device" ) res_dt = np.result_type(*dtypes) res_dt = _to_device_supported_dtype_impl(res_dt, has_fp16, has_fp64) for wdt in weak_dtypes: pair = _resolve_weak_types(wdt, res_dt, target_dev) res_dt = np.result_type(*pair) res_dt = _to_device_supported_dtype_impl(res_dt, has_fp16, has_fp64) else: res_dt = np.result_type(*dtypes) if weak_dtypes: weak_dt_obj = [wdt.get() for wdt in weak_dtypes] res_dt = np.result_type(res_dt, *weak_dt_obj) return res_dt
[docs]def iinfo(dtype, /): """iinfo(dtype) Returns machine limits for integer data types. Args: dtype (dtype, usm_ndarray): integer dtype or an array with integer dtype. Returns: iinfo_object: An object with the following attributes: * bits: int number of bits occupied by the data type * max: int largest representable number. * min: int smallest representable number. * dtype: dtype integer data type. """ if isinstance(dtype, dpt.usm_ndarray): dtype = dtype.dtype _supported_dtype([dpt.dtype(dtype)]) return np.iinfo(dtype)
[docs]def finfo(dtype, /): """finfo(type) Returns machine limits for floating-point data types. Args: dtype (dtype, usm_ndarray): floating-point dtype or an array with floating point data type. If complex, the information is about its component data type. Returns: finfo_object: an object have the following attributes: * bits: int number of bits occupied by dtype. * eps: float difference between 1.0 and the next smallest representable real-valued floating-point number larger than 1.0 according to the IEEE-754 standard. * max: float largest representable real-valued number. * min: float smallest representable real-valued number. * smallest_normal: float smallest positive real-valued floating-point number with full precision. * dtype: dtype real-valued floating-point data type. """ if isinstance(dtype, dpt.usm_ndarray): dtype = dtype.dtype _supported_dtype([dpt.dtype(dtype)]) return finfo_object(dtype)
def _supported_dtype(dtypes): for dtype in dtypes: if dtype.char not in "?bBhHiIlLqQefdFD": raise ValueError(f"Dpctl doesn't support dtype {dtype}.") return True
[docs]def isdtype(dtype, kind): """isdtype(dtype, kind) Returns a boolean indicating whether a provided `dtype` is of a specified data type `kind`. See [array API](array_api) for more information. [array_api]: https://data-apis.org/array-api/latest/ """ if not isinstance(dtype, np.dtype): raise TypeError(f"Expected instance of `dpt.dtype`, got {dtype}") if isinstance(kind, np.dtype): return dtype == kind elif isinstance(kind, str): if kind == "bool": return dtype == np.dtype("bool") elif kind == "signed integer": return dtype.kind == "i" elif kind == "unsigned integer": return dtype.kind == "u" elif kind == "integral": return dtype.kind in "iu" elif kind == "real floating": return dtype.kind == "f" elif kind == "complex floating": return dtype.kind == "c" elif kind == "numeric": return dtype.kind in "iufc" else: raise ValueError(f"Unrecognized data type kind: {kind}") elif isinstance(kind, tuple): return any(isdtype(dtype, k) for k in kind) else: raise TypeError(f"Unsupported data type kind: {kind}")
def _default_accumulation_dtype(inp_dt, q): """Gives default output data type for given input data type `inp_dt` when accumulation is performed on queue `q` """ inp_kind = inp_dt.kind if inp_kind in "bi": res_dt = dpt.dtype(ti.default_device_int_type(q)) if inp_dt.itemsize > res_dt.itemsize: res_dt = inp_dt elif inp_kind in "u": res_dt = dpt.dtype(ti.default_device_uint_type(q)) res_ii = dpt.iinfo(res_dt) inp_ii = dpt.iinfo(inp_dt) if inp_ii.min >= res_ii.min and inp_ii.max <= res_ii.max: pass else: res_dt = inp_dt elif inp_kind in "fc": res_dt = inp_dt return res_dt def _default_accumulation_dtype_fp_types(inp_dt, q): """Gives default output data type for given input data type `inp_dt` when accumulation is performed on queue `q` and the accumulation supports only floating-point data types """ inp_kind = inp_dt.kind if inp_kind in "biu": res_dt = dpt.dtype(ti.default_device_fp_type(q)) can_cast_v = dpt.can_cast(inp_dt, res_dt) if not can_cast_v: _fp64 = q.sycl_device.has_aspect_fp64 res_dt = dpt.float64 if _fp64 else dpt.float32 elif inp_kind in "f": res_dt = inp_dt elif inp_kind in "c": raise ValueError("function not defined for complex types") return res_dt __all__ = [ "_find_buf_dtype", "_find_buf_dtype2", "_to_device_supported_dtype", "_acceptance_fn_default_unary", "_acceptance_fn_reciprocal", "_acceptance_fn_default_binary", "_acceptance_fn_divide", "_acceptance_fn_negative", "_acceptance_fn_subtract", "_resolve_one_strong_one_weak_types", "_resolve_one_strong_two_weak_types", "_resolve_weak_types", "_resolve_weak_types_all_py_ints", "_weak_type_num_kind", "_strong_dtype_num_kind", "can_cast", "finfo", "iinfo", "isdtype", "result_type", "WeakBooleanType", "WeakIntegralType", "WeakFloatingType", "WeakComplexType", "_default_accumulation_dtype", "_default_accumulation_dtype_fp_types", "_find_buf_dtype_in_place_op", ]