# Data Parallel Control (dpctl)
#
# Copyright 2020-2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dpctl.tensor as dpt
import dpctl.tensor._tensor_impl as ti
import dpctl.utils as du
from ._numpy_helper import normalize_axis_index
from ._tensor_sorting_impl import (
_argsort_ascending,
_argsort_descending,
_sort_ascending,
_sort_descending,
)
__all__ = ["sort", "argsort"]
[docs]def sort(x, /, *, axis=-1, descending=False, stable=True):
"""sort(x, axis=-1, descending=False, stable=True)
Returns a sorted copy of an input array `x`.
Args:
x (usm_ndarray):
input array.
axis (Optional[int]):
axis along which to sort. If set to `-1`, the function
must sort along the last axis. Default: `-1`.
descending (Optional[bool]):
sort order. If `True`, the array must be sorted in descending
order (by value). If `False`, the array must be sorted in
ascending order (by value). Default: `False`.
stable (Optional[bool]):
sort stability. If `True`, the returned array must maintain the
relative order of `x` values which compare as equal. If `False`,
the returned array may or may not maintain the relative order of
`x` values which compare as equal. Default: `True`.
Returns:
usm_ndarray:
a sorted array. The returned array has the same data type and
the same shape as the input array `x`.
"""
if not isinstance(x, dpt.usm_ndarray):
raise TypeError(
f"Expected type dpctl.tensor.usm_ndarray, got {type(x)}"
)
nd = x.ndim
if nd == 0:
axis = normalize_axis_index(axis, ndim=1, msg_prefix="axis")
return dpt.copy(x, order="C")
else:
axis = normalize_axis_index(axis, ndim=nd, msg_prefix="axis")
a1 = axis + 1
if a1 == nd:
perm = list(range(nd))
arr = x
else:
perm = [i for i in range(nd) if i != axis] + [
axis,
]
arr = dpt.permute_dims(x, perm)
exec_q = x.sycl_queue
_manager = du.SequentialOrderManager[exec_q]
dep_evs = _manager.submitted_events
impl_fn = _sort_descending if descending else _sort_ascending
if arr.flags.c_contiguous:
res = dpt.empty_like(arr, order="C")
ht_ev, impl_ev = impl_fn(
src=arr,
trailing_dims_to_sort=1,
dst=res,
sycl_queue=exec_q,
depends=dep_evs,
)
_manager.add_event_pair(ht_ev, impl_ev)
else:
tmp = dpt.empty_like(arr, order="C")
ht_ev, copy_ev = ti._copy_usm_ndarray_into_usm_ndarray(
src=arr, dst=tmp, sycl_queue=exec_q, depends=dep_evs
)
_manager.add_event_pair(ht_ev, copy_ev)
res = dpt.empty_like(arr, order="C")
ht_ev, impl_ev = impl_fn(
src=tmp,
trailing_dims_to_sort=1,
dst=res,
sycl_queue=exec_q,
depends=[copy_ev],
)
_manager.add_event_pair(ht_ev, impl_ev)
if a1 != nd:
inv_perm = sorted(range(nd), key=lambda d: perm[d])
res = dpt.permute_dims(res, inv_perm)
return res
[docs]def argsort(x, axis=-1, descending=False, stable=True):
"""argsort(x, axis=-1, descending=False, stable=True)
Returns the indices that sort an array `x` along a specified axis.
Args:
x (usm_ndarray):
input array.
axis (Optional[int]):
axis along which to sort. If set to `-1`, the function
must sort along the last axis. Default: `-1`.
descending (Optional[bool]):
sort order. If `True`, the array must be sorted in descending
order (by value). If `False`, the array must be sorted in
ascending order (by value). Default: `False`.
stable (Optional[bool]):
sort stability. If `True`, the returned array must maintain the
relative order of `x` values which compare as equal. If `False`,
the returned array may or may not maintain the relative order of
`x` values which compare as equal. Default: `True`.
Returns:
usm_ndarray:
an array of indices. The returned array has the same shape as
the input array `x`. The return array has default array index
data type.
"""
if not isinstance(x, dpt.usm_ndarray):
raise TypeError(
f"Expected type dpctl.tensor.usm_ndarray, got {type(x)}"
)
nd = x.ndim
if nd == 0:
axis = normalize_axis_index(axis, ndim=1, msg_prefix="axis")
return dpt.zeros_like(
x, dtype=ti.default_device_index_type(x.sycl_queue), order="C"
)
else:
axis = normalize_axis_index(axis, ndim=nd, msg_prefix="axis")
a1 = axis + 1
if a1 == nd:
perm = list(range(nd))
arr = x
else:
perm = [i for i in range(nd) if i != axis] + [
axis,
]
arr = dpt.permute_dims(x, perm)
exec_q = x.sycl_queue
_manager = du.SequentialOrderManager[exec_q]
dep_evs = _manager.submitted_events
impl_fn = _argsort_descending if descending else _argsort_ascending
index_dt = ti.default_device_index_type(exec_q)
if arr.flags.c_contiguous:
res = dpt.empty_like(arr, dtype=index_dt, order="C")
ht_ev, impl_ev = impl_fn(
src=arr,
trailing_dims_to_sort=1,
dst=res,
sycl_queue=exec_q,
depends=dep_evs,
)
_manager.add_event_pair(ht_ev, impl_ev)
else:
tmp = dpt.empty_like(arr, order="C")
ht_ev, copy_ev = ti._copy_usm_ndarray_into_usm_ndarray(
src=arr, dst=tmp, sycl_queue=exec_q, depends=dep_evs
)
_manager.add_event_pair(ht_ev, copy_ev)
res = dpt.empty_like(arr, dtype=index_dt, order="C")
ht_ev, impl_ev = impl_fn(
src=tmp,
trailing_dims_to_sort=1,
dst=res,
sycl_queue=exec_q,
depends=[copy_ev],
)
_manager.add_event_pair(ht_ev, impl_ev)
if a1 != nd:
inv_perm = sorted(range(nd), key=lambda d: perm[d])
res = dpt.permute_dims(res, inv_perm)
return res