dpnp.log1p
- dpnp.log1p(x, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the natural logarithm of (1 + x) for each element x_i of input array x.
This function calculates log(1 + x) more accurately for small values of x.
For full documentation refer to
numpy.log1p
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array, expected to have numeric data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise log(1 + x) results. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.expm1
exp(x) - 1
, the inverse ofdpnp.log1p
.dpnp.log
Natural logarithm, element-wise.
dpnp.log10
Return the base 10 logarithm of the input array, element-wise.
dpnp.log2
Return the base-2 logarithm of the input array, element-wise.
Examples
>>> import dpnp as np >>> x = np.arange(3.) >>> np.log1p(x) array([0.0, 0.69314718, 1.09861229])
>>> np.log1p(array(1e-99)) array(1e-99)
>>> np.log(array(1 + 1e-99)) array(0.0)