dpnp.log2
- dpnp.log2(x, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the base-2 logarithm for each element x_i of input array x.
For full documentation refer to
numpy.log2
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array, expected to have numeric data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise base-2 logarithm of x. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.log
Natural logarithm, element-wise.
dpnp.log10
Return the base 10 logarithm of the input array, element-wise.
dpnp.log1p
Return the natural logarithm of one plus the input array, element-wise.
Examples
>>> import dpnp as np >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-inf, 0.0, 1.0, 4.0])
>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])