dpnp.log
- dpnp.log(x, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the natural logarithm for each element x_i of input array x.
For full documentation refer to
numpy.log
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array, expected to have numeric data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise natural logarithm values. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.log10
Return the base 10 logarithm of the input array, element-wise.
dpnp.log2
Base-2 logarithm of x.
dpnp.log1p
Return the natural logarithm of one plus the input array, element-wise.
Examples
>>> import dpnp as np >>> x = np.array([1, np.e, np.e**2, 0]) >>> np.log(x) array([ 0., 1., 2., -inf])