dpnp.expm1
- dpnp.expm1(x, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the exponential minus
1
for each element \(x_i\) of input array x.For full documentation refer to
numpy.expm1
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array, expected to have a floating-point data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None
.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None
.Default:
"K"
.
- Returns:
out -- An array containing containing the evaluated result for each element in x. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.exp
Calculate \(e^x\), element-wise.
dpnp.exp2
Calculate \(2^x\), element-wise.
dpnp.log1p
Calculate \(\log(1 + x)\), element-wise, the inverse of
dpnp.expm1
.
Notes
This function provides greater precision than \(e^x - 1\) for small values of x.
Examples
>>> import dpnp as np >>> x = np.arange(3.) >>> np.expm1(x) array([0.0, 1.718281828, 6.389056099])
>>> np.expm1(np.array(1e-10)) array(1.00000000005e-10)
>>> np.exp(np.array(1e-10)) - 1 array(1.000000082740371e-10)