dpnp.linalg.vector_norm
- dpnp.linalg.vector_norm(x, /, *, axis=None, keepdims=False, ord=2)[source]
Computes the vector norm of a vector (or batch of vectors) x.
This function is Array API compatible.
For full documentation refer to
numpy.linalg.vector_norm
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array.
axis ({None, int, n-tuple of ints}, optional) -- If an integer, axis specifies the axis (dimension) along which to compute vector norms. If an n-tuple, axis specifies the axes (dimensions) along which to compute batched vector norms. If
None
, the vector norm must be computed over all array values (i.e., equivalent to computing the vector norm of a flattened array). Default:None
.keepdims (bool, optional) -- If this is set to
True
, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default:False
.ord ({int, float, inf, -inf, 'fro', 'nuc'}, optional) -- The order of the norm. For details see the table under
Notes
section indpnp.linalg.norm
. Default:2
.
- Returns:
out -- Norm of the vector.
- Return type:
dpnp.ndarray
See also
dpnp.linalg.norm
Generic norm function.
Examples
>>> import dpnp as np >>> a = np.arange(9) + 1 >>> a array([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> b = a.reshape((3, 3)) >>> b array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> np.linalg.vector_norm(b) array(16.88194302) >>> np.linalg.vector_norm(b, ord=np.inf) array(9.) >>> np.linalg.vector_norm(b, ord=-np.inf) array(1.)
>>> np.linalg.vector_norm(b, ord=1) array(45.) >>> np.linalg.vector_norm(b, ord=-1) array(0.35348576) >>> np.linalg.vector_norm(b, ord=2) array(16.881943016134134) >>> np.linalg.vector_norm(b, ord=-2) array(0.8058837395885292)