dpnp.linalg.norm
- dpnp.linalg.norm(x, ord=None, axis=None, keepdims=False)[source]
Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the
ord
parameter.For full documentation refer to
numpy.linalg.norm
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array. If axis is
None
, x must be 1-D or 2-D, unless ord isNone
. If both axis and ord areNone
, the 2-norm ofx.ravel
will be returned.ord ({int, float, inf, -inf, "fro", "nuc"}, optional) -- Norm type. inf means dpnp's inf object. Default:
None
.axis ({None, int, 2-tuple of ints}, optional) -- If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is
None
then either a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. Default:None
.keepdims (bool, optional) -- If this is set to
True
, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default:False
.
- Returns:
out -- Norm of the matrix or vector(s).
- Return type:
dpnp.ndarray
See also
dpnp.linalg.matrix_norm
Computes the matrix norm of a matrix.
dpnp.linalg.vector_norm
Computes the vector norm of a vector.
Notes
For values of
ord < 1
, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes.The following norms can be calculated:
ord
norm for matrices
norm for vectors
None
Frobenius norm
2-norm
'fro'
Frobenius norm
--
'nuc'
nuclear norm
--
inf
max(sum(abs(x), axis=1))
max(abs(x))
-inf
min(sum(abs(x), axis=1))
min(abs(x))
0
--
sum(x != 0)
1
max(sum(abs(x), axis=0))
as below
-1
min(sum(abs(x), axis=0))
as below
2
2-norm (largest sing. value)
as below
-2
smallest singular value
as below
other
--
sum(abs(x)**ord)**(1./ord)
The Frobenius norm is given by [1]:
\(||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}\)
The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when
x.ndim != 2
.References
Examples
>>> import dpnp as np >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
>>> np.linalg.norm(a) array(7.74596669) >>> np.linalg.norm(b) array(7.74596669) >>> np.linalg.norm(b, 'fro') array(7.74596669) >>> np.linalg.norm(a, np.inf) array(4.) >>> np.linalg.norm(b, np.inf) array(9.) >>> np.linalg.norm(a, -np.inf) array(0.) >>> np.linalg.norm(b, -np.inf) array(2.)
>>> np.linalg.norm(a, 1) array(20.) >>> np.linalg.norm(b, 1) array(7.) >>> np.linalg.norm(a, -1) array(0.) >>> np.linalg.norm(b, -1) array(6.) >>> np.linalg.norm(a, 2) array(7.74596669) >>> np.linalg.norm(b, 2) array(7.34846923)
>>> np.linalg.norm(a, -2) array(0.) >>> np.linalg.norm(b, -2) array(4.35106603e-18) # may vary >>> np.linalg.norm(a, 3) array(5.84803548) # may vary >>> np.linalg.norm(a, -3) array(0.)
Using the axis argument to compute vector norms:
>>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> np.linalg.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> np.linalg.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> np.linalg.norm(c, ord=1, axis=1) array([ 6., 6.])
Using the axis argument to compute matrix norms:
>>> m = np.arange(8).reshape(2,2,2) >>> np.linalg.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> np.linalg.norm(m[0, :, :]), np.linalg.norm(m[1, :, :]) (array(3.74165739), array(11.22497216))