dpnp.linalg.norm

dpnp.linalg.norm(x, ord=None, axis=None, keepdims=False)[source]

Matrix or vector norm.

This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ord parameter.

For full documentation refer to numpy.linalg.norm.

Parameters:
  • x ({dpnp.ndarray, usm_ndarray}) -- Input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both axis and ord are None, the 2-norm of x.ravel will be returned.

  • ord ({int, float, inf, -inf, "fro", "nuc"}, optional) -- Norm type. inf means dpnp's inf object. Default: None.

  • axis ({None, int, 2-tuple of ints}, optional) -- If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is None then either a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. Default: None.

  • keepdims (bool, optional) -- If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default: False.

Returns:

out -- Norm of the matrix or vector(s).

Return type:

dpnp.ndarray

See also

dpnp.linalg.matrix_norm

Computes the matrix norm of a matrix.

dpnp.linalg.vector_norm

Computes the vector norm of a vector.

Notes

For values of ord < 1, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes.

The following norms can be calculated:

ord

norm for matrices

norm for vectors

None

Frobenius norm

2-norm

'fro'

Frobenius norm

--

'nuc'

nuclear norm

--

inf

max(sum(abs(x), axis=1))

max(abs(x))

-inf

min(sum(abs(x), axis=1))

min(abs(x))

0

--

sum(x != 0)

1

max(sum(abs(x), axis=0))

as below

-1

min(sum(abs(x), axis=0))

as below

2

2-norm (largest sing. value)

as below

-2

smallest singular value

as below

other

--

sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [1]:

\(||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}\)

The nuclear norm is the sum of the singular values.

Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when x.ndim != 2.

References

Examples

>>> import dpnp as np
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, -1,  0,  1,  2,  3,  4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
       [-1,  0,  1],
       [ 2,  3,  4]])
>>> np.linalg.norm(a)
array(7.74596669)
>>> np.linalg.norm(b)
array(7.74596669)
>>> np.linalg.norm(b, 'fro')
array(7.74596669)
>>> np.linalg.norm(a, np.inf)
array(4.)
>>> np.linalg.norm(b, np.inf)
array(9.)
>>> np.linalg.norm(a, -np.inf)
array(0.)
>>> np.linalg.norm(b, -np.inf)
array(2.)
>>> np.linalg.norm(a, 1)
array(20.)
>>> np.linalg.norm(b, 1)
array(7.)
>>> np.linalg.norm(a, -1)
array(0.)
>>> np.linalg.norm(b, -1)
array(6.)
>>> np.linalg.norm(a, 2)
array(7.74596669)
>>> np.linalg.norm(b, 2)
array(7.34846923)
>>> np.linalg.norm(a, -2)
array(0.)
>>> np.linalg.norm(b, -2)
array(4.35106603e-18) # may vary
>>> np.linalg.norm(a, 3)
array(5.84803548) # may vary
>>> np.linalg.norm(a, -3)
array(0.)

Using the axis argument to compute vector norms:

>>> c = np.array([[ 1, 2, 3],
...               [-1, 1, 4]])
>>> np.linalg.norm(c, axis=0)
array([ 1.41421356,  2.23606798,  5.        ])
>>> np.linalg.norm(c, axis=1)
array([ 3.74165739,  4.24264069])
>>> np.linalg.norm(c, ord=1, axis=1)
array([ 6.,  6.])

Using the axis argument to compute matrix norms:

>>> m = np.arange(8).reshape(2,2,2)
>>> np.linalg.norm(m, axis=(1,2))
array([  3.74165739,  11.22497216])
>>> np.linalg.norm(m[0, :, :]), np.linalg.norm(m[1, :, :])
(array(3.74165739), array(11.22497216))