dpnp.linalg.matrix_norm
- dpnp.linalg.matrix_norm(x, /, *, keepdims=False, ord='fro')[source]
Computes the matrix norm of a matrix (or a stack of matrices) x.
This function is Array API compatible.
For full documentation refer to
numpy.linalg.matrix_norm
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array having shape (..., M, N) and whose two innermost dimensions form
MxN
matrices.keepdims (bool, optional) -- If this is set to
True
, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default:False
.ord ({None, 1, -1, 2, -2, dpnp.inf, -dpnp.inf, 'fro', 'nuc'}, optional) -- The order of the norm. For details see the table under
Notes
section indpnp.linalg.norm
. Default:"fro"
.
- Returns:
out -- Norm of the matrix.
- Return type:
dpnp.ndarray
See also
dpnp.linalg.norm
Generic norm function.
Examples
>>> import dpnp as np >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
>>> np.linalg.matrix_norm(b) array(7.74596669) >>> np.linalg.matrix_norm(b, ord='fro') array(7.74596669) >>> np.linalg.matrix_norm(b, ord=np.inf) array(9.) >>> np.linalg.matrix_norm(b, ord=-np.inf) array(2.)
>>> np.linalg.matrix_norm(b, ord=1) array(7.) >>> np.linalg.matrix_norm(b, ord=-1) array(6.) >>> np.linalg.matrix_norm(b, ord=2) array(7.34846923) >>> np.linalg.matrix_norm(b, ord=-2) array(4.35106603e-18) # may vary