dpnp.linalg.cond
- dpnp.linalg.cond(x, p=None)[source]
Compute the condition number of a matrix.
For full documentation refer to
numpy.linalg.cond
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- The matrix whose condition number is sought.
p ({None, 1, -1, 2, -2, inf, -inf, "fro"}, optional) -- Order of the norm used in the condition number computation.
inf
means the dpnp.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Default:None
.
- Returns:
out -- The condition number of the matrix. May be infinite.
- Return type:
dpnp.ndarray
See also
dpnp.linalg.norm
Matrix or vector norm.
Examples
>>> import dpnp as np >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> np.linalg.cond(a) array(1.41421356) >>> np.linalg.cond(a, 'fro') array(3.16227766) >>> np.linalg.cond(a, np.inf) array(2.) >>> np.linalg.cond(a, -np.inf) array(1.) >>> np.linalg.cond(a, 1) array(2.) >>> np.linalg.cond(a, -1) array(1.) >>> np.linalg.cond(a, 2) array(1.41421356) >>> np.linalg.cond(a, -2) array(0.70710678) # may vary >>> x = min(np.linalg.svd(a, compute_uv=False)) >>> y = min(np.linalg.svd(np.linalg.inv(a), compute_uv=False)) >>> x * y array(0.70710678) # may vary