dpnp.fromstring
- dpnp.fromstring(string, dtype=<class 'float'>, count=-1, *, sep, like=None, device=None, usm_type='device', sycl_queue=None)[source]
A new 1-D array initialized from text data in a string.
For full documentation refer to
numpy.fromstring
.- Parameters:
string (str) -- A string containing the data.
dtype (data-type, optional) -- The data type of the array. For binary input data, the data must be in exactly this format. Default is the default floating point data type for the device where the returned array is allocated.
count (int, optional) -- Read this number of dtype elements from the data. If this is negative (the default), the count will be determined from the length of the data.
sep (str, optional) -- The string separating numbers in the data; extra whitespace between elements is also ignored.
device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
"device"
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.
- Returns:
out -- The constructed array.
- Return type:
dpnp.ndarray
Limitations
Parameter like is supported only with default value
None
. Otherwise, the function raisesNotImplementedError
exception.Notes
This uses
numpy.fromstring
and coerces the result to a DPNP array.See also
dpnp.frombuffer
Construct array from the buffer data.
dpnp.fromfile
Construct array from data in a text or binary file.
dpnp.fromiter
Construct array from an iterable object.
Examples
>>> import dpnp as np >>> np.fromstring('1 2', dtype=int, sep=' ') array([1, 2]) >>> np.fromstring('1, 2', dtype=int, sep=',') array([1, 2])