dpnp.frombuffer
- dpnp.frombuffer(buffer, dtype=<class 'float'>, count=-1, offset=0, *, like=None, device=None, usm_type='device', sycl_queue=None)[source]
Interpret a buffer as a 1-dimensional array.
For full documentation refer to
numpy.frombuffer
.- Parameters:
buffer (buffer_like) -- An object that exposes the buffer interface.
dtype (data-type, optional) -- Data-type of the returned array. Default is the default floating point data type for the device where the returned array is allocated.
count (int, optional) -- Number of items to read.
-1
means all data in the buffer.offset (int, optional) -- Start reading the buffer from this offset (in bytes). Default:
0
.device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
"device"
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.
- Returns:
out -- A 1-dimensional array created from input buffer object.
- Return type:
dpnp.ndarray
Limitations
Parameter like is supported only with default value
None
. Otherwise, the function raisesNotImplementedError
exception.Notes
This uses
numpy.frombuffer
and coerces the result to a DPNP array.See also
dpnp.fromfile
Construct array from data in a text or binary file.
dpnp.fromiter
Construct array from an iterable object.
dpnp.fromstring
Construct array from the text data in a string.
Examples
>>> import dpnp as np >>> s = b'\x01\x02\x03\x04' >>> np.frombuffer(s, dtype=np.int32) array([67305985], dtype=int32) >>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype='u1', count=3) array([1, 2, 3], dtype=uint8)
Creating an array on a different device or with a specified usm_type
>>> x = np.frombuffer(s, dtype=np.int32) # default case >>> x.device, x.usm_type (Device(level_zero:gpu:0), 'device')
>>> y = np.frombuffer(s, dtype=np.int32, device='cpu') >>> y.device, y.usm_type (Device(opencl:cpu:0), 'device')
>>> z = np.frombuffer(s, dtype=np.int32, usm_type="host") >>> z.device, z.usm_type (Device(level_zero:gpu:0), 'host')