dpnp.copy
- dpnp.copy(a, order='K', subok=False, device=None, usm_type=None, sycl_queue=None)[source]
Return an array copy of the given object.
For full documentation refer to
numpy.copy
.- Parameters:
a (array_like) -- Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array. Default:
"K"
.device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
None
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.
Limitations
Parameter subok is supported only with default value
False
. Otherwise, the function raisesNotImplementedError
exception.- Returns:
out -- Array interpretation of a.
- Return type:
dpnp.ndarray
See also
dpnp.ndarray.copy
Preferred method for creating an array copy
Notes
This is equivalent to:
>>> dpnp.array(a, copy=True)
Examples
Create an array x, with a reference y and a copy z:
>>> import dpnp as np >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x)
Note that, when we modify x, y will change, but not z:
>>> x[0] = 10 >>> x[0] == y[0] array(True) >>> x[0] == z[0] array(False)
Creating an array on a different device or with a specified usm_type
>>> x0 = np.array([1, 2, 3]) >>> x = np.copy(x0) # default case >>> x, x.device, x.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'device')
>>> y = np.copy(x0, device="cpu") >>> y, y.device, y.usm_type (array([1, 2, 3]), Device(opencl:cpu:0), 'device')
>>> z = np.copy(x0, usm_type="host") >>> z, z.device, z.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'host')