dpnp.fromiter
- dpnp.fromiter(iter, dtype, count=-1, *, like=None, device=None, usm_type='device', sycl_queue=None)[source]
- Create a new 1-dimensional array from an iterable object. - For full documentation refer to - numpy.fromiter.- Parameters:
- iter (iterable object) -- An iterable object providing data for the array. 
- dtype ({None, str, dtype object}) -- The data-type of the returned array. 
- count (int, optional) -- The number of items to read from iterable. The default is -1, which means all data is read. 
- device ({None, string, SyclDevice, SyclQueue, Device}, optional) -- - An array API concept of device where the output array is created. device can be - None, a oneAPI filter selector string, an instance of- dpctl.SyclDevicecorresponding to a non-partitioned SYCL device, an instance of- dpctl.SyclQueue, or a- dpctl.tensor.Deviceobject returned by- dpnp.ndarray.device.- Default: - None.
- usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default: - "device".
- sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as - None(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:- None.
 
- Returns:
- out -- The output array. 
- Return type:
- dpnp.ndarray 
 - Limitations - Parameter like is supported only with default value - None. Otherwise, the function raises- NotImplementedErrorexception.- Notes - This uses - numpy.fromiterand coerces the result to a DPNP array.- See also - dpnp.frombuffer
- Construct array from the buffer data. 
- dpnp.fromfile
- Construct array from data in a text or binary file. 
- dpnp.fromstring
- Construct array from the text data in a string. 
 - Examples - >>> import dpnp as np >>> iterable = (a * a for a in range(5)) >>> np.fromiter(iterable, float) array([ 0., 1., 4., 9., 16.]) - Creating an array on a different device or with a specified usm_type - >>> x = np.fromiter(iterable, np.int32) # default case >>> x.device, x.usm_type (Device(level_zero:gpu:0), 'device') - >>> y = np.fromiter(iterable, np.int32, device='cpu') >>> y.device, y.usm_type (Device(opencl:cpu:0), 'device') - >>> z = np.fromiter(iterable, np.int32, usm_type="host") >>> z.device, z.usm_type (Device(level_zero:gpu:0), 'host')