dpnp.asarray
- dpnp.asarray(a, dtype=None, order=None, *, device=None, usm_type=None, sycl_queue=None, copy=None, like=None)[source]
Converts an input object into array.
For full documentation refer to
numpy.asarray
.- Parameters:
a (array_like) -- Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
dtype ({None, dtype}, optional) -- The desired dtype for the array. If not given, a default dtype will be used that can represent the values (by considering Promotion Type Rule and device capabilities when necessary). Default:
None
.order ({None, "C", "F", "A", "K"}, optional) -- Memory layout of the newly output array. Default:
"K"
.device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property. Default:None
.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
None
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.copy ({None, bool}, optional) -- If
True
, then the array data is copied. IfNone
, a copy will only be made if a copy is needed to satisfy any of the requirements (dtype
,order
, etc.). ForFalse
it raises aValueError
exception if a copy can not be avoided. Default:True
.
- Returns:
out -- Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order.
- Return type:
dpnp.ndarray
Limitations
Parameter like is supported only with default value
None
. Otherwise, the function raisesNotImplementedError
exception.See also
dpnp.asanyarray
Similar function which passes through subclasses.
dpnp.ascontiguousarray
Convert input to a contiguous array.
dpnp.asfarray
Convert input to a floating point ndarray.
dpnp.asfortranarray
Convert input to an ndarray with column-major memory order.
dpnp.asarray_chkfinite
Similar function which checks input for NaNs and Infs.
dpnp.fromiter
Create an array from an iterator.
dpnp.fromfunction
Construct an array by executing a function on grid positions.
Examples
>>> import dpnp as np >>> np.asarray([1, 2, 3]) array([1, 2, 3])
Creating an array on a different device or with a specified usm_type
>>> x = np.asarray([1, 2, 3]) # default case >>> x, x.device, x.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'device')
>>> y = np.asarray([1, 2, 3], device="cpu") >>> y, y.device, y.usm_type (array([1, 2, 3]), Device(opencl:cpu:0), 'device')
>>> z = np.asarray([1, 2, 3], usm_type="host") >>> z, z.device, z.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'host')