dpnp.asarray_chkfinite
- dpnp.asarray_chkfinite(a, dtype=None, order=None, *, device=None, usm_type=None, sycl_queue=None)[source]
Convert the input to an array, checking for NaNs or Infs.
For full documentation refer to
numpy.asarray_chkfinite
.- Parameters:
arr (array_like) -- Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs.
dtype ({None, str, dtype object}, optional) -- By default, the data-type is inferred from the input data. Default:
None
.order ({None, "C", "F", "A", "K"}, optional) -- Memory layout of the newly output array. Default:
"K"
.device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property. Default:None
.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
None
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.
- Returns:
out -- Array interpretation of a. No copy is performed if the input is already an ndarray.
- Return type:
dpnp.ndarray
- Raises:
ValueError -- Raises
ValueError
if a contains NaN (Not a Number) or Inf (Infinity).
See also
dpnp.asarray
Create an array.
dpnp.asanyarray
Converts an input object into array.
dpnp.ascontiguousarray
Convert input to a c-contiguous array.
dpnp.asfortranarray
Convert input to an array with column-major memory order.
dpnp.fromiter
Create an array from an iterator.
dpnp.fromfunction
Construct an array by executing a function on grid positions.
Examples
>>> import dpnp as np
Convert a list into an array. If all elements are finite,
asarray_chkfinite
is identical toasarray
.>>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=np.float32) array([1., 2.])
Raises
ValueError
if array_like contains NaNs or Infs.>>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print('ValueError') ValueError
Creating an array on a different device or with a specified usm_type
>>> x = np.asarray_chkfinite([1, 2, 3]) # default case >>> x, x.device, x.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'device')
>>> y = np.asarray_chkfinite([1, 2, 3], device="cpu") >>> y, y.device, y.usm_type (array([1, 2, 3]), Device(opencl:cpu:0), 'device')
>>> z = np.asarray_chkfinite([1, 2, 3], usm_type="host") >>> z, z.device, z.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'host')