pandas.core.window.Rolling.var¶
Calculate unbiased rolling variance.
Normalized by N-1 by default. This can be changed using the ddof argument.
- param ddof
- int, default 1
Delta Degrees of Freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used.
- return
Series or DataFrame Returns the same object type as the caller of the rolling calculation.
Limitations¶
DataFrame/Series elements cannot be max/min float/integer. Otherwise SDC and Pandas results are different.
Examples¶
import pandas as pd
from numba import njit
@njit
def series_rolling_var():
series = pd.Series([4, 3, 5, 2, 6]) # Series of 4, 3, 5, 2, 6
out_series = series.rolling(3).var()
return out_series # Expect series of NaN, NaN, 1.000000, 2.333333, 4.333333
print(series_rolling_var())
$ python ./series/rolling/series_rolling_var.py
0 NaN
1 NaN
2 1.000000
3 2.333333
4 4.333333
dtype: float64
import pandas as pd
from numba import njit
@njit
def df_rolling_var():
df = pd.DataFrame({'A': [4, 3, 5, 2, 6], 'B': [-4, -3, -5, -2, -6]})
out_df = df.rolling(3).var()
# Expect DataFrame of
# {'A': [NaN, NaN, 1.000000, 2.333333, 4.333333],
# 'B': [NaN, NaN, 1.000000, 2.333333, 4.333333]}
return out_df
print(df_rolling_var())
$ python ./dataframe/rolling/dataframe_rolling_var.py
A B
0 NaN NaN
1 NaN NaN
2 1.000000 1.000000
3 2.333333 2.333333
4 4.333333 4.333333
See also
- Series.rolling
Calling object with a Series.
- DataFrame.rolling
Calling object with a DataFrame.
- Series.var
Similar method for Series.
- DataFrame.var
Similar method for DataFrame.