pandas.DataFrame.var¶
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
- param axis
{index (0), columns (1)}
- param skipna
- bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
- param level
- int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- param ddof
- int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- param numeric_only
- bool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- return
Series or DataFrame (if level specified)
Limitations¶
Parameters axis
, level
and numeric_only
are unsupported.
Examples¶
import pandas as pd
import numpy as np
from numba import njit
@njit
def dataframe_var():
df = pd.DataFrame({"A": [.2, .0, .6, .2],
"B": [2, 0, 6, 2],
"C": [-1, np.nan, 1, np.inf]})
return df.var()
print(dataframe_var())
$ python ./dataframe/dataframe_var.py
A 0.063333
B 6.333333
C NaN
dtype: float64
See also
- Series.std
Returns sample standard deviation over Series.
- Series.var
Returns unbiased variance over Series.
- DataFrame.std
Returns sample standard deviation over DataFrame.