Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

param axis

{index (0)}

param skipna
bool, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

param level
int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

param ddof
int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

param numeric_only
bool, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.


scalar or Series (if level specified)


Parameters axis, level and numeric_only are supported only with default value None.


Returns unbiased variance over Series.
import numpy as np
import pandas as pd
from numba import njit

def series_var():
    series = pd.Series(np.arange(10))

    return series.var()  # Expect value: 9.16666...

$ python ./series/

See also


Returns sample standard deviation over Series.