pandas.Series.var¶
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
- param axis
{index (0)}
- param skipna
- bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
- param level
- int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- param ddof
- int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- param numeric_only
- bool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- return
scalar or Series (if level specified)
Limitations¶
Parameters axis
, level
and numeric_only
are supported only with default value None
.
Examples¶
import numpy as np
import pandas as pd
from numba import njit
@njit
def series_var():
series = pd.Series(np.arange(10))
return series.var() # Expect value: 9.16666...
print(series_var())
$ python ./series/series_var.py
9.166666666666666
See also
- Series.std
Returns sample standard deviation over Series.