dpnp.tri
- dpnp.tri(N, /, M=None, k=0, dtype=<class 'float'>, *, device=None, usm_type='device', sycl_queue=None)[source]
An array with ones at and below the given diagonal and zeros elsewhere.
For full documentation refer to
numpy.tri
.- Parameters:
N (int) -- Number of rows in the array.
M ({None, int}, optional) -- Number of columns in the array. By default, M is taken equal to N.
k (int, optional) -- The sub-diagonal at and below which the array is filled. k = 0 is the main diagonal, while k < 0 is below it, and k > 0 is above. Default:
0
.dtype ({None, dtype}, optional) -- The desired dtype for the array, e.g., dpnp.int32. Default is the default floating point data type for the device where input array is allocated.
device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
"device"
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.
- Returns:
out -- Array with its lower triangle filled with ones and zeros elsewhere.
- Return type:
dpnp.ndarray of shape (N, M)
Examples
>>> import dpnp as np >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]])
>>> np.tri(3, 5, -1) array([[0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.]])
Creating an array on a different device or with a specified usm_type
>>> x = np.tri(3, 2) # default case >>> x, x.device, x.usm_type (array([[1., 0.], [1., 1.], [1., 1.]]), Device(level_zero:gpu:0), 'device')
>>> y = np.tri(3, 2, device="cpu") >>> y, y.device, y.usm_type (array([[1., 0.], [1., 1.], [1., 1.]]), Device(opencl:cpu:0), 'device')
>>> z = np.tri(3, 2, usm_type="host") >>> z, z.device, z.usm_type (array([[1., 0.], [1., 1.], [1., 1.]]), Device(level_zero:gpu:0), 'host')