dpnp.diagflat
- dpnp.diagflat(v, /, k=0, *, device=None, usm_type=None, sycl_queue=None)[source]
Create a two-dimensional array with the flattened input as a diagonal.
For full documentation refer to
numpy.diagflat
.- Parameters:
v (array_like) -- Input data, which is flattened and set as the k-th diagonal of the output, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
k (int, optional) -- Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) k giving the number of the diagonal above (below) the main.
device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
None
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None
(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:None
.
- Returns:
out -- The 2-D output array.
- Return type:
dpnp.ndarray
See also
dpnp.diag
Extract a diagonal or construct a diagonal array.
dpnp.diagonal
Return specified diagonals.
dpnp.trace
Return sum along diagonals.
Examples
>>> import dpnp as np >>> x0 = np.array([[1, 2], [3, 4]]) >>> np.diagflat(x0) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]])
>>> np.diagflat(x0, 1) array([[0, 1, 0, 0, 0], [0, 0, 2, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 4], [0, 0, 0, 0, 0]])
Creating an array on a different device or with a specified usm_type
>>> x = np.diagflat(x0) # default case >>> x, x.device, x.usm_type array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]), Device(level_zero:gpu:0), 'device')
>>> y = np.diagflat(x0, device="cpu") >>> y, y.device, y.usm_type array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]), Device(opencl:cpu:0), 'device')
>>> z = np.diagflat(x0, usm_type="host") >>> z, z.device, z.usm_type array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]), Device(level_zero:gpu:0), 'host')