dpnp.arange
- dpnp.arange(start, /, stop=None, step=1, *, dtype=None, like=None, device=None, usm_type='device', sycl_queue=None)[source]
- Returns an array with evenly spaced values within a given interval. - For full documentation refer to - numpy.arange.- Parameters:
- start ({int, real}, optional) -- Start of interval. The interval includes this value. The default start value is 0. 
- stop ({int, real}) -- End of interval. The interval does not include this value, except in some cases where step is not an integer and floating point round-off affects the length of out. 
- step ({int, real}, optional) -- Spacing between values. The default step size is 1. If step is specified as a position argument, start must also be given. 
- dtype ({None, str, dtype object}, optional) -- The desired dtype for the array. If not given, a default dtype will be used that can represent the values (by considering Promotion Type Rule and device capabilities when necessary). 
- device ({None, string, SyclDevice, SyclQueue, Device}, optional) -- - An array API concept of device where the output array is created. device can be - None, a oneAPI filter selector string, an instance of- dpctl.SyclDevicecorresponding to a non-partitioned SYCL device, an instance of- dpctl.SyclQueue, or a- dpctl.tensor.Deviceobject returned by- dpnp.ndarray.device.- Default: - None.
- usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default: - "device".
- sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as - None(the default), which means to get the SYCL queue from device keyword if present or to use a default queue. Default:- None.
 
- Returns:
- out -- The 1-D array containing evenly spaced values. 
- Return type:
- dpnp.ndarray 
 - Limitations - Parameter like is supported only with default value - None. Otherwise, the function raises- NotImplementedErrorexception.- See also - dpnp.linspace
- Evenly spaced numbers with careful handling of endpoints. 
 - Examples - >>> import dpnp as np >>> np.arange(3) array([0, 1, 2]) >>> np.arange(3, 7) array([3, 4, 5, 6]) >>> np.arange(3, 7, 2) array([3, 5]) - Creating an array on a different device or with a specified usm_type - >>> x = np.arange(3) # default case >>> x, x.device, x.usm_type (array([0, 1, 2]), Device(level_zero:gpu:0), 'device') - >>> y = np.arange(3, device="cpu") >>> y, y.device, y.usm_type (array([0, 1, 2]), Device(opencl:cpu:0), 'device') - >>> z = np.arange(3, usm_type="host") >>> z, z.device, z.usm_type (array([0, 1, 2]), Device(level_zero:gpu:0), 'host')