dpnp.linspace
- dpnp.linspace(start, stop, /, num, *, dtype=None, device=None, usm_type=None, sycl_queue=None, endpoint=True, retstep=False, axis=0)[source]
Return evenly spaced numbers over a specified interval.
For full documentation refer to
numpy.linspace
.- Parameters:
start (array_like) -- The starting value of the sequence, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
stop (array_like) -- The end value of the sequence, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays. If endpoint is set to
False
the sequence consists of all but the last ofnum + 1
evenly spaced samples, so that stop is excluded.dtype ({None, dtype}, optional) -- The desired dtype for the array. If not given, a default dtype will be used that can represent the values (by considering Promotion Type Rule and device capabilities when necessary).
device ({None, string, SyclDevice, SyclQueue}, optional) -- An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) -- The type of SYCL USM allocation for the output array. Default:
None
.sycl_queue ({None, SyclQueue}, optional) -- A SYCL queue to use for output array allocation and copying.
endpoint (bool, optional) -- If
True
, stop is the last sample. Otherwise, it is not included. Default:True
.retstep (bool, optional) -- If
True
, return (samples, step), where step is the spacing between samples.axis (int, optional) -- The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
- Returns:
out (dpnp.ndarray) -- There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is
True
orFalse
).step (float, optional) -- Only returned if retstep is
True
. Size of spacing between samples.
See also
dpnp.arange
Similar to
dpnp.linspace
, but uses a step size (instead of the number of samples).dpnp.geomspace
Similar to
dpnp.linspace
, but with numbers spaced evenly on a log scale (a geometric progression).dpnp.logspace
Similar to
dpnp.geomspace
, but with the end points specified as logarithms.
Examples
>>> import dpnp as np >>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), array(0.25))
Creating an array on a different device or with a specified usm_type
>>> x = np.linspace(2.0, 3.0, num=3) # default case >>> x, x.device, x.usm_type (array([2. , 2.5, 3. ]), Device(level_zero:gpu:0), 'device')
>>> y = np.linspace(2.0, 3.0, num=3, device="cpu") >>> y, y.device, y.usm_type (array([2. , 2.5, 3. ]), Device(opencl:cpu:0), 'device')
>>> z = np.linspace(2.0, 3.0, num=3, usm_type="host") >>> z, z.device, z.usm_type (array([2. , 2.5, 3. ]), Device(level_zero:gpu:0), 'host')