dpnp.hanning
- dpnp.hanning(M, device=None, usm_type=None, sycl_queue=None)[source]
Return the Hanning window.
The Hanning window is a taper formed by using a weighted cosine.
For full documentation refer to
numpy.hanning.- Parameters:
M (int) -- Number of points in the output window. If zero or less, an empty array is returned.
device ({None, string, SyclDevice, SyclQueue, Device}, optional) --
An array API concept of device where the output array is created. device can be
None, a oneAPI filter selector string, an instance ofdpctl.SyclDevicecorresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue, or adpctl.tensor.Deviceobject returned bydpnp.ndarray.device.Default:
None.usm_type ({None, "device", "shared", "host"}, optional) --
The type of SYCL USM allocation for the output array.
Default:
None.sycl_queue ({None, SyclQueue}, optional) --
A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None(the default), which means to get the SYCL queue from device keyword if present or to use a default queue.Default:
None.
- Returns:
out -- The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).
- Return type:
dpnp.ndarray of shape (M,)
See also
dpnp.bartlettReturn the Bartlett window.
dpnp.blackmanReturn the Blackman window.
dpnp.hammingReturn the Hamming window.
dpnp.kaiserReturn the Kaiser window.
Notes
The Hanning window is defined as
\[w(n) = 0.5 - 0.5\cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1\]Examples
>>> import dpnp as np >>> np.hanning(12) array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ])
Creating the output array on a different device or with a specified usm_type:
>>> x = np.hanning(4) # default case >>> x, x.device, x.usm_type (array([0. , 0.75, 0.75, 0. ]), Device(level_zero:gpu:0), 'device')
>>> y = np.hanning(4, device="cpu") >>> y, y.device, y.usm_type (array([0. , 0.75, 0.75, 0. ]), Device(opencl:cpu:0), 'device')
>>> z = np.hanning(4, usm_type="host") >>> z, z.device, z.usm_type (array([0. , 0.75, 0.75, 0. ]), Device(level_zero:gpu:0), 'host')