dpnp.hamming
- dpnp.hamming(M, device=None, usm_type=None, sycl_queue=None)[source]
Return the Hamming window.
The Hamming window is a taper formed by using a weighted cosine.
For full documentation refer to
numpy.hamming.- Parameters:
M (int) -- Number of points in the output window. If zero or less, an empty array is returned.
device ({None, string, SyclDevice, SyclQueue, Device}, optional) --
An array API concept of device where the output array is created. device can be
None, a oneAPI filter selector string, an instance ofdpctl.SyclDevicecorresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue, or adpctl.tensor.Deviceobject returned bydpnp.ndarray.device.Default:
None.usm_type ({None, "device", "shared", "host"}, optional) --
The type of SYCL USM allocation for the output array.
Default:
None.sycl_queue ({None, SyclQueue}, optional) --
A SYCL queue to use for output array allocation and copying. The sycl_queue can be passed as
None(the default), which means to get the SYCL queue from device keyword if present or to use a default queue.Default:
None.
- Returns:
out -- The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).
- Return type:
dpnp.ndarray of shape (M,)
See also
dpnp.bartlettReturn the Bartlett window.
dpnp.blackmanReturn the Blackman window.
dpnp.hanningReturn the Hanning window.
dpnp.kaiserReturn the Kaiser window.
Notes
The Hamming window is defined as
\[w(n) = 0.54 - 0.46\cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1\]Examples
>>> import dpnp as np >>> np.hamming(12) array([0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) # may vary
Creating the output array on a different device or with a specified usm_type:
>>> x = np.hamming(4) # default case >>> x, x.device, x.usm_type (array([0.08, 0.77, 0.77, 0.08]), Device(level_zero:gpu:0), 'device')
>>> y = np.hamming(4, device="cpu") >>> y, y.device, y.usm_type (array([0.08, 0.77, 0.77, 0.08]), Device(opencl:cpu:0), 'device')
>>> z = np.hamming(4, usm_type="host") >>> z, z.device, z.usm_type (array([0.08, 0.77, 0.77, 0.08]), Device(level_zero:gpu:0), 'host')