dpnp.array
- dpnp.array(a, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None, device=None, usm_type=None, sycl_queue=None)[source]
Create an array.
For full documentation refer to
numpy.array
.- Parameters:
a (array_like) – Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
dtype (dtype, optional) – The desired dtype for the array. If not given, a default dtype will be used that can represent the values (by considering Promotion Type Rule and device capabilities when necessary).
copy (bool, optional) – If
True
(default), then the object is copied.order ({"C", "F", "A", "K"}, optional) – Memory layout of the newly output array. Default: “K”.
device ({None, string, SyclDevice, SyclQueue}, optional) – An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) – The type of SYCL USM allocation for the output array. Default is
None
.sycl_queue ({None, SyclQueue}, optional) – A SYCL queue to use for output array allocation and copying.
- Returns:
out – An array object satisfying the specified requirements.
- Return type:
dpnp.ndarray
Limitations
Parameter subok is supported only with default value
False
. Parameter ndmin is supported only with default value0
. Parameter like is supported only with default valueNone
. Otherwise, the function raises NotImplementedError exception.See also
dpnp.empty_like
Return an empty array with shape and type of input.
dpnp.ones_like
Return an array of ones with shape and type of input.
dpnp.zeros_like
Return an array of zeros with shape and type of input.
dpnp.full_like
Return a new array with shape of input filled with value.
dpnp.empty
Return a new uninitialized array.
dpnp.ones
Return a new array setting values to one.
dpnp.zeros
Return a new array setting values to zero.
dpnp.full
Return a new array of given shape filled with value.
Examples
>>> import dpnp as np >>> x = np.array([1, 2, 3]) >>> x.ndim, x.size, x.shape (1, 3, (3,)) >>> x array([1, 2, 3])
More than one dimension:
>>> x2 = np.array([[1, 2], [3, 4]]) >>> x2.ndim, x2.size, x2.shape (2, 4, (2, 2)) >>> x2 array([[1, 2], [3, 4]])
Creating an array on a different device or with a specified usm_type
>>> x = np.array([1, 2, 3]) # default case >>> x, x.device, x.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'device')
>>> y = np.array([1, 2, 3], device="cpu") >>> y, y.device, y.usm_type (array([1, 2, 3]), Device(opencl:cpu:0), 'device')
>>> z = np.array([1, 2, 3], usm_type="host") >>> z, z.device, z.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'host')