dpnp.empty_like
- dpnp.empty_like(a, /, *, dtype=None, order='C', subok=False, shape=None, device=None, usm_type=None, sycl_queue=None)[source]
Return a new array with the same shape and type as a given array.
For full documentation refer to
numpy.empty_like
.- Parameters:
a ({dpnp_array, usm_ndarray}) – The shape and dtype of a define these same attributes of the returned array.
dtype (dtype, optional) – The desired dtype for the array, e.g., dpnp.int32. Default is the default floating point data type for the device where input array is allocated.
order ({"C", "F", None}, optional) – Memory layout of the newly output array. Default: “C”.
shape ({int, sequence of ints}) – Overrides the shape of the result.
device ({None, string, SyclDevice, SyclQueue}, optional) – An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) – The type of SYCL USM allocation for the output array. Default is
None
.sycl_queue ({None, SyclQueue}, optional) – A SYCL queue to use for output array allocation and copying.
- Returns:
out – Array of uninitialized data with the same shape and type as prototype.
- Return type:
dpnp.ndarray
Limitations
Parameter order is supported only with values
"C"
,"F"
andNone
. Parameter subok is supported only with default valueFalse
. Otherwise, the function raises NotImplementedError exception.See also
dpnp.ones_like
Return an array of ones with shape and type of input.
dpnp.zeros_like
Return an array of zeros with shape and type of input.
dpnp.full_like
Return a new array with shape of input filled with value.
dpnp.empty
Return a new uninitialized array.
Examples
>>> import dpnp as np >>> a = np.array([1, 2, 3]) >>> np.empty_like(a) array([1, 2, 3])
Creating an array on a different device or with a specified usm_type
>>> x = np.empty_like(a) # default case >>> x.shape, x.device, x.usm_type ((3, ), Device(level_zero:gpu:0), 'device')
>>> y = np.empty_like(a, device="cpu") >>> y.shape, y.device, y.usm_type ((3, ), Device(opencl:cpu:0), 'device')
>>> z = np.empty_like(a, usm_type="host") >>> z.shape, z.device, z.usm_type ((3, ), Device(level_zero:gpu:0), 'host')