dpnp.eye
- dpnp.eye(N, /, M=None, k=0, dtype=None, order='C', *, like=None, device=None, usm_type='device', sycl_queue=None)[source]
Return a 2-D array with ones on the diagonal and zeros elsewhere.
For full documentation refer to
numpy.eye
.- Parameters:
N (int) – Number of rows in the output.
M (int, optional) – Number of columns in the output. If None, defaults to N.
k (int, optional) – Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
dtype (dtype, optional) – The desired dtype for the array, e.g., dpnp.int32. Default is the default floating point data type for the device where input array is allocated.
order ({"C", "F", None}, optional) – Memory layout of the newly output array. Default: “C”.
device ({None, string, SyclDevice, SyclQueue}, optional) – An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) – The type of SYCL USM allocation for the output array. Default is “device”.
sycl_queue ({None, SyclQueue}, optional) – A SYCL queue to use for output array allocation and copying.
- Returns:
out – An array where all elements are equal to zero, except for the k-th diagonal, whose values are equal to one.
- Return type:
dpnp.ndarray
Limitations
Parameter order is supported only with values
"C"
,"F"
andNone
. Parameter like is supported only with default valueNone
. Otherwise, the function raises NotImplementedError exception.Examples
>>> import dpnp as np >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]])
>>> np.eye(3, k=1) array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]])
Creating an array on a different device or with a specified usm_type
>>> x = np.eye(2, dtype=int) # default case >>> x, x.device, x.usm_type (array([[1, 0], [0, 1]]), Device(level_zero:gpu:0), 'device')
>>> y = np.eye(2, dtype=int, device="cpu") >>> y, y.device, y.usm_type (array([[1, 0], [0, 1]]), Device(opencl:cpu:0), 'device')
>>> z = np.eye(2, dtype=int, usm_type="host") >>> z, z.device, z.usm_type (array([[1, 0], [0, 1]]), Device(level_zero:gpu:0), 'host')