dpnp.full
- dpnp.full(shape, fill_value, *, dtype=None, order='C', like=None, device=None, usm_type=None, sycl_queue=None)[source]
Return a new array of given shape and type, filled with fill_value.
For full documentation refer to
numpy.full
.- Parameters:
shape ({int, sequence of ints}) – Shape of the new array, e.g., (2, 3) or 2.
fill_value ({scalar, array_like}) – Fill value, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
dtype (dtype, optional) – The desired dtype for the array, e.g., dpnp.int32. Default is the default floating point data type for the device where input array is allocated.
order ({"C", "F", None}, optional) – Memory layout of the newly output array. Default: “C”.
device ({None, string, SyclDevice, SyclQueue}, optional) – An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) – The type of SYCL USM allocation for the output array. Default is
None
.sycl_queue ({None, SyclQueue}, optional) – A SYCL queue to use for output array allocation and copying.
- Returns:
out – Array of fill_value with the given shape, dtype, and order.
- Return type:
dpnp.ndarray
Limitations
Parameter order is supported only with values
"C"
,"F"
andNone
. Parameter like is supported only with default valueNone
. Otherwise, the function raises NotImplementedError exception.See also
dpnp.full_like
Return a new array with shape of input filled with value.
dpnp.empty
Return a new uninitialized array.
dpnp.ones
Return a new array setting values to one.
dpnp.zeros
Return a new array setting values to zero.
Examples
>>> import dpnp as np >>> np.full(4, 10) array([10, 10, 10, 10])
Creating an array on a different device or with a specified usm_type
>>> x = np.full(4, 10) # default case >>> x, x.device, x.usm_type (array([10, 10, 10, 10]), Device(level_zero:gpu:0), 'device')
>>> y = np.full(4, 10, device="cpu") >>> y, y.device, y.usm_type (array([10, 10, 10, 10]), Device(opencl:cpu:0), 'device')
>>> z = np.full(4, 10, usm_type="host") >>> z, z.device, z.usm_type (array([10, 10, 10, 10]), Device(level_zero:gpu:0), 'host')