pandas.core.window.Rolling.mean¶
Calculate the rolling mean of the values.
*args Under Review. **kwargs Under Review. :return: Series or DataFrame
Returned object type is determined by the caller of the rolling calculation.
Limitations¶
DataFrame/Series elements cannot be max/min float/integer. Otherwise SDC and Pandas results are different.
Examples¶
import pandas as pd
from numba import njit
@njit
def series_rolling_mean():
series = pd.Series([4, 3, 5, 2, 6]) # Series of 4, 3, 5, 2, 6
out_series = series.rolling(3).mean()
return out_series # Expect series of NaN, NaN, 4.000000, 3.333333, 4.333333
print(series_rolling_mean())
$ python ./series/rolling/series_rolling_mean.py
0 NaN
1 NaN
2 4.000000
3 3.333333
4 4.333333
dtype: float64
import pandas as pd
from numba import njit
@njit
def df_rolling_mean():
df = pd.DataFrame({'A': [4, 3, 5, 2, 6], 'B': [-4, -3, -5, -2, -6]})
out_df = df.rolling(3).mean()
# Expect DataFrame of
# {'A': [NaN, NaN, 4.000000, 3.333333, 4.333333],
# 'B': [NaN, NaN, -4.000000, -3.333333, -4.333333]}
return out_df
print(df_rolling_mean())
$ python ./dataframe/rolling/dataframe_rolling_mean.py
A B
0 NaN NaN
1 NaN NaN
2 4.000000 -4.000000
3 3.333333 -3.333333
4 4.333333 -4.333333
See also
- Series.rolling
Calling object with a Series.
- DataFrame.rolling
Calling object with a DataFrame.
- Series.mean
Similar method for Series.
- DataFrame.mean
Similar method for DataFrame.