pandas.DataFrame.isna¶
Detect missing values.
Return a boolean same-sized object indicating if the values are NA.
NA values, such as None or numpy.NaN
, gets mapped to True
values.
Everything else gets mapped to False values. Characters such as empty
strings ''
or numpy.inf
are not considered NA values
(unless you set pandas.options.mode.use_inf_as_na = True
).
- return
DataFrame Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
Examples¶
import pandas as pd
import numpy as np
from numba import njit
@njit
def dataframe_isna():
df = pd.DataFrame({'A': [1.0, np.nan, 3.0, 1.0], 'B': [4, 5, 6, 7], 'C': [None, 'b', 'c', 'd']})
return df.isna()
print(dataframe_isna())
$ python ./dataframe/dataframe_isna.py
A B C
0 False False True
1 True False False
2 False False False
3 False False False
See also
- DataFrame.isnull
Alias of isna.
- DataFrame.notna
Boolean inverse of isna.
- DataFrame.dropna
Omit axes labels with missing values.
- pandas.isna
Top-level isna.