pandas.DataFrame.drop¶
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.
- param labels
- single label or list-like
Index or column labels to drop.
- param axis
- {0 or ‘index’, 1 or ‘columns’}, default 0
Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
- param index
- single label or list-like
Alternative to specifying axis (
labels, axis=0
is equivalent toindex=labels
).New in version 0.21.0.
- param columns
- single label or list-like
Alternative to specifying axis (
labels, axis=1
is equivalent tocolumns=labels
).New in version 0.21.0.
- param level
- int or level name, optional
For MultiIndex, level from which the labels will be removed.
- param inplace
- bool, default False
If True, do operation inplace and return None.
- param errors
- {‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and only existing labels are dropped.
- return
DataFrame DataFrame without the removed index or column labels.
- raises
- KeyError
If any of the labels is not found in the selected axis.
Limitations¶
Parameters
labels
,axis
,index
,level
andinplace
are currently unsupported.- Parameter
columns
is required and is expected to be a Literal value with one column name or Tuple with columns names.
- Parameter
- Supported
errors
can be {raise
,ignore
}, defaultraise
. Ifignore
, suppress error and only existing labels are dropped.
- Supported
Examples¶
import pandas as pd
from numba import njit
@njit
def dataframe_drop():
df = pd.DataFrame({'A': [1.0, 2.0, 3.0, 1.0], 'B': [4, 5, 6, 7], 'C': ['a', 'b', 'c', 'd']})
return df.drop(columns='A')
print(dataframe_drop())
$ python ./dataframe/dataframe_drop.py
B C
0 4 a
1 5 b
2 6 c
3 7 d
See also
- DataFrame.loc
Label-location based indexer for selection by label.
- DataFrame.dropna
Return DataFrame with labels on given axis omitted where (all or any) data are missing.
- DataFrame.drop_duplicates
Return DataFrame with duplicate rows removed, optionally only considering certain columns.
- Series.drop
Return Series with specified index labels removed.