pandas.DataFrame.count¶
Count non-NA cells for each column or row.
The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.
- param axis
- {0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.
- param level
- int or str, optional
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. A str specifies the level name.
- param numeric_only
- bool, default False
Include only float, int or boolean data.
- return
Series or DataFrame For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.
Limitations¶
Parameters axis
, level
and numeric_only
are unsupported.
Examples¶
import pandas as pd
import numpy as np
from numba import njit
@njit
def dataframe_count():
df = pd.DataFrame({"A": [.2, .0, .6, .2],
"B": [2, 0, 6, 2],
"C": [-1, np.nan, 1, np.inf]})
return df.count()
print(dataframe_count())
$ python ./dataframe/dataframe_count.py
A 4
B 4
C 3
dtype: int64
See also
- Series.count
Number of non-NA elements in a Series.
- DataFrame.shape
Number of DataFrame rows and columns (including NA elements).
- DataFrame.isna
Boolean same-sized DataFrame showing places of NA elements.