Configure debugging environment¶
Activate the debugger and compiler:
export ONEAPI_ROOT=/path/to/oneapi source $ONEAPI_ROOT/debugger/latest/env/vars.sh source $ONEAPI_ROOT/compiler/latest/env/vars.sh
Create and activate conda environment with the installed numba-dpex:
conda create numba-dpex-dev numba-dpex conda activate numba-dpex-dev
Activate NEO drivers (optional).
If you want to use the local NEO driver, activate the variables for it. See the NEO driver.
Check debugging environment.
You can check the correctness of the work with the following example:
5import dpnp as np 6 7import numba_dpex as ndpx 8 9 10@ndpx.kernel(debug=True) 11def data_parallel_sum(item, a, b, c): 12 i = item.get_id(0) 13 c[i] = a[i] + b[i] # Condition breakpoint location 14 15 16global_size = 10 17N = global_size 18 19a = np.array(np.random.random(N), dtype=np.float32) 20b = np.array(np.random.random(N), dtype=np.float32) 21c = np.ones_like(a) 22 23ndpx.call_kernel(data_parallel_sum, ndpx.Range(global_size), a, b, c) 24 25print("Done...")
Launch the Intel® Distribution for GDB* and set a breakpoint in the kernel:
$ gdb-oneapi -q --args python simple_sum.py (gdb) break simple_sum.py:22 No source file named simple_sum.py. Make breakpoint pending on future shared library load? (y or [n]) y Breakpoint 1 (simple_sum.py:22) pending. (gdb) run
In the output you can see that the breakpoint was hit successfully:
Thread 2.2 hit Breakpoint 1, with SIMD lanes [0-7], __main__::data_parallel_sum () at simple_sum.py:22 22 i = dpex.get_global_id(0) (gdb) continue Done... ...