dpnp.vsplit
- dpnp.vsplit(ary, indices_or_sections)[source]
Split an array into multiple sub-arrays vertically (row-wise).
Please refer to the
dpnp.split
documentation.vsplit
is equivalent tosplit
withaxis=0
(default), the array is always split along the first axis regardless of the array dimension.For full documentation refer to
numpy.vsplit
.- Parameters:
ary ({dpnp.ndarray, usm_ndarray}) -- Array to be divided into sub-arrays.
indices_or_sections ({int, sequence of ints}) -- If indices_or_sections is an integer, N, the array will be divided into N equal arrays along the first axis. If such a split is not possible, an error is raised. If indices_or_sections is a sequence of sorted integers, the entries indicate where along the first axis the array is split.
- Returns:
sub-arrays -- A list of sub arrays. Each array is a view of the corresponding input array.
- Return type:
list of dpnp.ndarray
See also
dpnp.split
Split array into multiple sub-arrays of equal size.
Examples
>>> import dpnp as np >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.vsplit(x, 2) [array([[0., 1., 2., 3.], [4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.], [12., 13., 14., 15.]])] >>> np.vsplit(x, np.array([3, 6])) [array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
With a higher dimensional array the split is still along the first axis.
>>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.vsplit(x, 2) [array([[[0., 1.], [2., 3.]]]), array([[[4., 5.], [6., 7.]]])]