dpnp.hsplit
- dpnp.hsplit(ary, indices_or_sections)[source]
Split an array into multiple sub-arrays horizontally (column-wise).
Please refer to the
dpnp.split
documentation.hsplit
is equivalent todpnp.split
withaxis=1
, the array is always split along the second axis except for 1-D arrays, where it is split ataxis=0
.For full documentation refer to
numpy.hsplit
.- Parameters:
ary ({dpnp.ndarray, usm_ndarray}) -- Array to be divided into sub-arrays.
indices_or_sections ({int, sequence of ints}) -- If indices_or_sections is an integer, N, the array will be divided into N equal arrays along the second axis except for 1-D arrays, where it is split at the first axis. If such a split is not possible, an error is raised. If indices_or_sections is a sequence of sorted integers, the entries indicate where along the second axis the array is split. For 1-D arrays, the entries indicate where along the first axis the array is split.
- Returns:
sub-arrays -- A list of sub arrays. Each array is a view of the corresponding input array.
- Return type:
list of dpnp.ndarray
See also
dpnp.split
Split array into multiple sub-arrays of equal size.
Examples
>>> import dpnp as np >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])] >>> np.hsplit(x, np.array([3, 6])) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), array([[ 3.], [ 7.], [11.], [15.]]), array([])]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.hsplit(x, 2) [array([[[0., 1.]], [[4., 5.]]]), array([[[2., 3.]], [[6., 7.]]])]
With a 1-D array, the split is along axis 0.
>>> x = np.array([0, 1, 2, 3, 4, 5]) >>> np.hsplit(x, 2) [array([0, 1, 2]), array([3, 4, 5])]