dpnp.spacing
- dpnp.spacing(x, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
- Return the distance between x and the nearest adjacent number. - For full documentation refer to - numpy.spacing.- Parameters:
- x ({dpnp.ndarray, usm_ndarray}) -- The array of values to find the spacing of, expected to have a real-valued floating-point data type. 
- out ({None, dpnp.ndarray, usm_ndarray}, optional) -- - Output array to populate. Array must have the correct shape and the expected data type. - Default: - None.
- order ({None, "C", "F", "A", "K"}, optional) -- - Memory layout of the newly output array, if parameter out is - None.- Default: - "K".
 
- Returns:
- out -- The spacing of values of x. The data type of the returned array is determined by the Type Promotion Rules. 
- Return type:
- dpnp.ndarray 
 - Limitations - Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise - NotImplementedErrorexception will be raised.- Notes - It can be considered as a generalization of EPS: - dpnp.spacing(dpnp.float64(1)) == dpnp.finfo(dpnp.float64).eps, and there should not be any representable number between- x + spacing(x)and x for any finite x.- Spacing of +- inf and NaN is - NaN.- Examples - >>> import dpnp as np >>> a = np.array(1) >>> b = np.spacing(a) >>> b == np.finfo(b.dtype).eps array(True)