dpnp.nextafter
- dpnp.nextafter(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Return the next floating-point value after x1 towards x2, element-wise.
For full documentation refer to
numpy.nextafter
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- Values to find the next representable value of, expected to have a real-valued floating-point data type.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- The direction where to look for the next representable value of x1, also expected to have a real-valued floating-point data type.
out ({None, dpnp.ndarray, usm_ndarray}, optional) --
Output array to populate. Array must have the correct shape and the expected data type.
Default:
None
.order ({None, "C", "F", "A", "K"}, optional) --
Memory layout of the newly output array, if parameter out is
None
.Default:
"K"
.
- Returns:
out -- The next representable values of x1 in the direction of x2. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.Notes
At least one of x1 or x2 must be an array.
If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).Examples
>>> import dpnp as np >>> a = np.array(1, dtype=np.float32) >>> eps = np.finfo(a.dtype).eps >>> np.nextafter(a, 2) == eps + 1 array(True)
>>> a = np.array([1, 2], dtype=np.float32) >>> b = np.array([2, 1], dtype=np.float32) >>> c = np.array([eps + 1, 2 - eps]) >>> np.nextafter(a, b) == c array([ True, True])