dpnp.linalg.inv
- dpnp.linalg.inv(a)[source]
Compute the (multiplicative) inverse of a matrix.
Given a square matrix a, return the matrix ainv satisfying
dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])
.For full documentation refer to
numpy.linalg.inv
.- Parameters:
a ((..., M, M) {dpnp.ndarray, usm_ndarray}) -- Matrix to be inverted.
- Returns:
out -- (Multiplicative) inverse of the matrix a.
- Return type:
(..., M, M) dpnp.ndarray
See also
dpnp.linalg.cond
Compute the condition number of a matrix.
dpnp.linalg.svd
Compute the singular value decomposition.
Examples
>>> import dpnp as np >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = np.linalg.inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) array([ True]) >>> np.allclose(np.dot(ainv, a), np.eye(2)) array([ True])
Inverses of several matrices can be computed at once:
>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> np.linalg.inv(a) array([[[-2. , 1. ], [ 1.5 , -0.5 ]], [[-1.25, 0.75], [ 0.75, -0.25]]])