dpnp.greater
- dpnp.greater(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the greater-than test results for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.greater
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have numeric data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have numeric data type. Both inputs x1 and x2 can not be scalars at the same time.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the result of element-wise greater-than comparison. The returned array has a data type of bool.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.greater_equal
Return the truth value of (x1 >= x2) element-wise.
dpnp.less
Return the truth value of (x1 < x2) element-wise.
dpnp.less_equal
Return the truth value of (x1 =< x2) element-wise.
dpnp.equal
Return (x1 == x2) element-wise.
dpnp.not_equal
Return (x1 != x2) element-wise.
Examples
>>> import dpnp as np >>> x1 = np.array([4, 2]) >>> x2 = np.array([2, 2]) >>> np.greater(x1, x2) array([ True, False])
The
>
operator can be used as a shorthand forgreater
ondpnp.ndarray
.>>> a = np.array([4, 2]) >>> b = np.array([2, 2]) >>> a > b array([ True, False])