dpnp.equal
- dpnp.equal(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Calculates equality test results for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.equal
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have numeric data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have numeric data type. Both inputs x1 and x2 can not be scalars at the same time.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array have the correct shape and the expected data type.
order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the result of element-wise equality comparison. The returned array has a data type of bool.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.not_equal
Return (x1 != x2) element-wise.
dpnp.greater_equal
Return the truth value of (x1 >= x2) element-wise.
dpnp.less_equal
Return the truth value of (x1 =< x2) element-wise.
dpnp.greater
Return the truth value of (x1 > x2) element-wise.
dpnp.less
Return the truth value of (x1 < x2) element-wise.
Examples
>>> import dpnp as np >>> x1 = np.array([0, 1, 3]) >>> x2 = np.arange(3) >>> np.equal(x1, x2) array([ True, True, False])
What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:
>>> np.equal(1, np.ones(1)) array([ True])
The
==
operator can be used as a shorthand forequal
ondpnp.ndarray
.>>> a = np.array([2, 4, 6]) >>> b = np.array([2, 4, 2]) >>> a == b array([ True, True, False])