dpnp.digitize
- dpnp.digitize(x, bins, right=False)[source]
Return the indices of the bins to which each value in input array belongs.
For full documentation refer to
numpy.digitize
.- Parameters:
a ({dpnp.ndarray, usm_ndarray}) -- Input array to be binned.
bins ({dpnp.ndarray, usm_ndarray}) -- Array of bins. It has to be 1-dimensional and monotonic increasing or decreasing.
right (bool, optional) -- Indicates whether the intervals include the right or the left bin edge. Default:
False
.
- Returns:
indices -- Array of indices with the same shape as x.
- Return type:
dpnp.ndarray
Notes
This will not raise an exception when the input array is not monotonic.
See also
dpnp.bincount
Count number of occurrences of each value in array of non-negative integers.
dpnp.histogram
Compute the histogram of a data set.
dpnp.unique
Find the unique elements of an array.
dpnp.searchsorted
Find indices where elements should be inserted to maintain order.
Examples
>>> import dpnp as np >>> x = np.array([0.2, 6.4, 3.0, 1.6]) >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) >>> inds = np.digitize(x, bins) >>> inds array([1, 4, 3, 2]) >>> for n in range(x.size): ... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]) ... 0. <= 0.2 < 1. 4. <= 6.4 < 10. 2.5 <= 3. < 4. 1. <= 1.6 < 2.5
>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) >>> bins = np.array([0, 5, 10, 15, 20]) >>> np.digitize(x, bins, right=True) array([1, 2, 3, 4, 4]) >>> np.digitize(x, bins, right=False) array([1, 3, 3, 4, 5])