dpnp.bincount
- dpnp.bincount(x, /, weights=None, minlength=None)[source]
Count number of occurrences of each value in array of non-negative ints.
For full documentation refer to
numpy.bincount
.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input 1-dimensional array with nonnegative integer values.
weights ({None, dpnp.ndarray, usm_ndarray}, optional) -- Weights, array of the same shape as x. Default:
None
minlength ({None, int}, optional) -- A minimum number of bins for the output array. Default:
None
- Returns:
out -- The result of binning the input array. The length of out is equal to
dpnp.max(x) + 1
.- Return type:
dpnp.ndarray of ints
See also
dpnp.histogram
Compute the histogram of a data set.
dpnp.digitize
Return the indices of the bins to which each value
dpnp.unique
Find the unique elements of an array.
Examples
>>> import dpnp as np >>> np.bincount(np.arange(5)) array([1, 1, 1, 1, 1]) >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) array([1, 3, 1, 1, 0, 0, 0, 1])
>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) >>> np.bincount(x).size == np.amax(x) + 1 array(True)
The input array needs to be of integer dtype, otherwise a TypeError is raised:
>>> np.bincount(np.arange(5, dtype=np.float32)) Traceback (most recent call last): ... TypeError: x must be an integer array
A possible use of
dpnp.bincount
is to perform sums over variable-size chunks of an array, using the weights keyword.>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6], dtype=np.float32) # weights >>> x = np.array([0, 1, 1, 2, 2, 2]) >>> np.bincount(x, weights=w) array([0.3, 0.7, 1.1], dtype=float32)