dpnp.bitwise_xor
- dpnp.bitwise_xor(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the bitwise XOR of the underlying binary representation of each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.bitwise_xor
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have integer or boolean data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have integer or boolean data type. Both inputs x1 and x2 can not be scalars at the same time. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise results. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.logical_xor
Compute the truth value of
x1
XOR x2, element-wise.dpnp.bitwise_and
Compute the bit-wise AND of two arrays element-wise.
dpnp.bitwise_or
Compute the bit-wise OR of two arrays element-wise.
dpnp.binary_repr
Return the binary representation of the input number as a string.
Examples
>>> import dpnp as np >>> x1 = np.array([31, 3]) >>> x2 = np.array([5, 6]) >>> np.bitwise_xor(x1, x2) array([26, 5])
>>> a = np.array([True, True]) >>> b = np.array([False, True]) >>> np.bitwise_xor(a, b) array([ True, False])
The
^
operator can be used as a shorthand forbitwise_xor
ondpnp.ndarray
.>>> a ^ b array([ True, False])
The number 13 is represented by
00001101
. Likewise, 17 is represented by00010001
. The bit-wise XOR of 13 and 17 is therefore00011100
, or 28:>>> np.bitwise_xor(np.array(13), 17) array(28) >>> np.binary_repr(28) '11100'