dpnp.bitwise_or
- dpnp.bitwise_or(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the bitwise OR of the underlying binary representation of each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.bitwise_or
.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have integer or boolean data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have integer or boolean data type. Both inputs x1 and x2 can not be scalars at the same time. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None
.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None
. Default:"K"
.
- Returns:
out -- An array containing the element-wise results. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.logical_or
Compute the truth value of
x1
ORx2
element-wise.dpnp.bitwise_and
Compute the bit-wise AND of two arrays element-wise.
dpnp.bitwise_xor
Compute the bit-wise XOR of two arrays element-wise.
dpnp.binary_repr
Return the binary representation of the input number as a string.
Examples
>>> import dpnp as np >>> x1 = np.array([2, 5, 255]) >>> x2 = np.array([4]) >>> np.bitwise_or(x1, x2) array([ 6, 5, 255])
The
|
operator can be used as a shorthand forbitwise_or
ondpnp.ndarray
.>>> x1 | x2 array([ 6, 5, 255])
The number 13 has the binary representation
00001101
. Likewise, 16 is represented by00010000
. The bit-wise OR of 13 and 16 is then00011101
, or 29:>>> np.bitwise_or(np.array(13), 16) array(29) >>> np.binary_repr(29) '11101'