dpnp.ufunc.outer
- ufunc.outer(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)[source]
Apply the ufunc op to all pairs (a, b) with a in A and b in B.
- Parameters:
x1 ({dpnp.ndarray, usm_ndarray}) -- First input array.
x2 ({dpnp.ndarray, usm_ndarray}) -- Second input array.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type.
**kwargs -- For other keyword-only arguments, see the
dpnp.ufunc
.
- Returns:
out -- Output array. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedError
exception will be raised.See also
dpnp.outer
A less powerful version of dpnp.multiply.outer that ravels all inputs to 1D. This exists primarily for compatibility with old code.
dpnp.tensordot
dpnp.tensordot(a, b, axes=((), ())) and dpnp.multiply.outer(a, b) behave same for all dimensions of a and b.
Examples
>>> import dpnp as np >>> A = np.array([1, 2, 3]) >>> B = np.array([4, 5, 6]) >>> np.multiply.outer(A, B) array([[ 4, 5, 6], [ 8, 10, 12], [12, 15, 18]])
A multi-dimensional example:
>>> A = np.array([[1, 2, 3], [4, 5, 6]]) >>> A.shape (2, 3) >>> B = np.array([[1, 2, 3, 4]]) >>> B.shape (1, 4) >>> C = np.multiply.outer(A, B) >>> C.shape; C (2, 3, 1, 4) array([[[[ 1, 2, 3, 4]], [[ 2, 4, 6, 8]], [[ 3, 6, 9, 12]]], [[[ 4, 8, 12, 16]], [[ 5, 10, 15, 20]], [[ 6, 12, 18, 24]]]])