# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2023-2024, Intel Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
# *****************************************************************************
import dpctl.tensor as dpt
import dpctl.tensor._tensor_elementwise_impl as ti
import numpy
from dpctl.tensor._elementwise_common import (
BinaryElementwiseFunc,
UnaryElementwiseFunc,
)
import dpnp
from dpnp.dpnp_array import dpnp_array
__all__ = [
"acceptance_fn_negative",
"acceptance_fn_positive",
"acceptance_fn_sign",
"acceptance_fn_subtract",
"DPNPAngle",
"DPNPBinaryFunc",
"DPNPReal",
"DPNPRound",
"DPNPUnaryFunc",
"ufunc",
"unary_ufunc",
"binary_ufunc",
]
[docs]
class ufunc:
"""
ufunc()
Functions that operate element by element on whole arrays.
Calling ufuncs: `op(*x[, out], **kwargs)`
Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
Parameters
----------
x : {dpnp.ndarray, usm_ndarray}
One or two input arrays.
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
order : {None, "C", "F", "A", "K"}, optional
Memory layout of the newly output array, Cannot be provided
together with `out`. Default: ``"K"``.
dtype : {None, dtype}, optional
If provided, the destination array will have this dtype. Cannot be
provided together with `out`. Default: ``None``.
casting : {"no", "equiv", "safe", "same_kind", "unsafe"}, optional
Controls what kind of data casting may occur. Cannot be provided
together with `out`. Default: ``"same_kind"``.
Limitations
-----------
Keyword arguments `where` and `subok` are supported with their default values.
Other keyword arguments is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
"""
def __init__(
self,
name,
nin,
nout=1,
func=None,
docs=None,
to_usm_astype=None,
):
self.nin_ = nin
self.nout_ = nout
self.__name__ = name
self.func = func
self.__doc__ = docs
self.to_usm_astype = to_usm_astype
def __call__(
self,
*args,
out=None,
where=True,
casting="same_kind",
order="K",
dtype=None,
subok=True,
**kwargs,
):
dpnp.check_supported_arrays_type(
*args, scalar_type=True, all_scalars=False
)
if kwargs:
raise NotImplementedError(
f"Requested function={self.__name__} with kwargs={kwargs} "
"isn't currently supported."
)
if where is not True:
raise NotImplementedError(
f"Requested function={self.__name__} with where={where} "
"isn't currently supported."
)
if subok is not True:
raise NotImplementedError(
f"Requested function={self.__name__} with subok={subok} "
"isn't currently supported."
)
if (dtype is not None or casting != "same_kind") and out is not None:
raise TypeError(
f"Requested function={self.__name__} only takes `out` or "
"`dtype` as an argument, but both were provided."
)
if order is None:
order = "K"
elif order in "afkcAFKC":
order = order.upper()
else:
raise ValueError(
f"order must be one of 'C', 'F', 'A', or 'K' (got '{order}')"
)
astype_usm_args = self.to_usm_astype(*args, dtype, casting)
out_usm = None if out is None else dpnp.get_usm_ndarray(out)
res_usm = self.func.__call__(*astype_usm_args, out=out_usm, order=order)
if out is not None and isinstance(out, dpnp_array):
return out
return dpnp_array._create_from_usm_ndarray(res_usm)
@property
def nin(self):
"""
Returns the number of arguments treated as inputs.
Examples
--------
>>> import dpnp as np
>>> np.add.nin
2
>>> np.multiply.nin
2
>>> np.power.nin
2
>>> np.exp.nin
1
"""
return self.nin_
@property
def nout(self):
"""
Returns the number of arguments treated as outputs.
Examples
--------
>>> import dpnp as np
>>> np.add.nin
1
>>> np.multiply.nin
1
>>> np.power.nin
1
>>> np.exp.nin
1
"""
return self.nout_
@property
def nargs(self):
"""
Returns the number of arguments treated.
Examples
--------
>>> import dpnp as np
>>> np.add.nin
3
>>> np.multiply.nin
3
>>> np.power.nin
3
>>> np.exp.nin
2
"""
return self.nin_ + self.nout_
@property
def types(self):
"""
Returns information about types supported by implementation function,
using NumPy's character encoding for data types, e.g.
Examples
--------
>>> import dpnp as np
>>> np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I',
'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D']
>>> np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I',
'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D']
>>> np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D']
>>> np.exp.types
['e->e', 'f->f', 'd->d', 'F->F', 'D->D']
>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'ee->e', 'ff->f', 'dd->d']
"""
return self.func.types
@property
def ntypes(self):
"""
The number of types.
Examples
--------
>>> import dpnp as np
>>> np.add.ntypes
14
>>> np.multiply.ntypes
14
>>> np.power.ntypes
13
>>> np.exp.ntypes
5
>>> np.remainder.ntypes
11
"""
return len(self.func.types)
[docs]
def outer(
self,
x1,
x2,
out=None,
where=True,
order="K",
dtype=None,
subok=True,
**kwargs,
):
"""
Apply the ufunc op to all pairs (a, b) with a in A and b in B.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray}
First input array.
x2 : {dpnp.ndarray, usm_ndarray}
Second input array.
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
**kwargs
For other keyword-only arguments, see the :obj:`dpnp.ufunc`.
Returns
-------
out : dpnp.ndarray
Output array. The data type of the returned array is determined by
the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See also
--------
:obj:`dpnp.outer` : A less powerful version of dpnp.multiply.outer
that ravels all inputs to 1D. This exists primarily
for compatibility with old code.
:obj:`dpnp.tensordot` : dpnp.tensordot(a, b, axes=((), ())) and
dpnp.multiply.outer(a, b) behave same for all
dimensions of a and b.
Examples
--------
>>> import dpnp as np
>>> A = np.array([1, 2, 3])
>>> B = np.array([4, 5, 6])
>>> np.multiply.outer(A, B)
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
A multi-dimensional example:
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[ 1, 2, 3, 4]],
[[ 2, 4, 6, 8]],
[[ 3, 6, 9, 12]]],
[[[ 4, 8, 12, 16]],
[[ 5, 10, 15, 20]],
[[ 6, 12, 18, 24]]]])
"""
dpnp.check_supported_arrays_type(
x1, x2, scalar_type=True, all_scalars=False
)
if dpnp.isscalar(x1) or dpnp.isscalar(x2):
_x1 = x1
_x2 = x2
else:
_x1 = x1[(Ellipsis,) + (None,) * x2.ndim]
_x2 = x2[(None,) * x1.ndim + (Ellipsis,)]
return self.__call__(
_x1,
_x2,
out=out,
where=where,
order=order,
dtype=dtype,
subok=subok,
**kwargs,
)
class unary_ufunc(ufunc):
def __init__(
self,
name,
docs,
acceptance_fn=False,
):
def _to_usm_astype(x, dtype, casting):
if dtype is not None:
x = dpnp.astype(x, dtype=dtype, casting=casting, copy=False)
x_usm = dpnp.get_usm_ndarray(x)
return (x_usm,)
_name = "_" + name
dpt_result_type = getattr(ti, _name + "_result_type")
dpt_impl_fn = getattr(ti, _name)
func = UnaryElementwiseFunc(
name,
dpt_result_type,
dpt_impl_fn,
self.__doc__,
acceptance_fn=acceptance_fn,
)
super().__init__(
name, nin=1, func=func, docs=docs, to_usm_astype=_to_usm_astype
)
class binary_ufunc(ufunc):
def __init__(
self,
name,
docs,
inplace=False,
acceptance_fn=False,
):
def _to_usm_astype(x1, x2, dtype, casting):
if dtype is not None:
if dpnp.isscalar(x1):
x1 = dpnp.asarray(x1, dtype=dtype)
x2 = dpnp.astype(
x2, dtype=dtype, casting=casting, copy=False
)
elif dpnp.isscalar(x2):
x1 = dpnp.astype(
x1, dtype=dtype, casting=casting, copy=False
)
x2 = dpnp.asarray(x2, dtype=dtype)
else:
x1 = dpnp.astype(
x1, dtype=dtype, casting=casting, copy=False
)
x2 = dpnp.astype(
x2, dtype=dtype, casting=casting, copy=False
)
x1_usm = dpnp.get_usm_ndarray_or_scalar(x1)
x2_usm = dpnp.get_usm_ndarray_or_scalar(x2)
return x1_usm, x2_usm
_name = "_" + name
dpt_result_type = getattr(ti, _name + "_result_type")
dpt_impl_fn = getattr(ti, _name)
if inplace is True:
binary_inplace_fn = getattr(ti, _name + "_inplace")
else:
binary_inplace_fn = None
func = BinaryElementwiseFunc(
name,
dpt_result_type,
dpt_impl_fn,
self.__doc__,
binary_inplace_fn,
acceptance_fn=acceptance_fn,
)
super().__init__(
name, nin=2, func=func, docs=docs, to_usm_astype=_to_usm_astype
)
class DPNPUnaryFunc(UnaryElementwiseFunc):
"""
Class that implements unary element-wise functions.
Parameters
----------
name : {str}
Name of the unary function
result_type_resovler_fn : {callable}
Function that takes dtype of the input and returns the dtype of
the result if the implementation functions supports it, or
returns `None` otherwise.
unary_dp_impl_fn : {callable}
Data-parallel implementation function with signature
`impl_fn(src: usm_ndarray, dst: usm_ndarray,
sycl_queue: SyclQueue, depends: Optional[List[SyclEvent]])`
where the `src` is the argument array, `dst` is the
array to be populated with function values, effectively
evaluating `dst = func(src)`.
The `impl_fn` is expected to return a 2-tuple of `SyclEvent`s.
The first event corresponds to data-management host tasks,
including lifetime management of argument Python objects to ensure
that their associated USM allocation is not freed before offloaded
computational tasks complete execution, while the second event
corresponds to computational tasks associated with function evaluation.
docs : {str}
Documentation string for the unary function.
mkl_fn_to_call : {callable}
Check input arguments to answer if function from OneMKL VM library
can be used.
mkl_impl_fn : {callable}
Function from OneMKL VM library to call.
acceptance_fn : {callable}, optional
Function to influence type promotion behavior of this unary
function. The function takes 4 arguments:
arg_dtype - Data type of the first argument
buf_dtype - Data type the argument would be cast to
res_dtype - Data type of the output array with function values
sycl_dev - The :class:`dpctl.SyclDevice` where the function
evaluation is carried out.
The function is invoked when the argument of the unary function
requires casting, e.g. the argument of `dpctl.tensor.log` is an
array with integral data type.
"""
def __init__(
self,
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
mkl_fn_to_call=None,
mkl_impl_fn=None,
acceptance_fn=None,
):
def _call_func(src, dst, sycl_queue, depends=None):
"""
A callback to register in UnaryElementwiseFunc class of
dpctl.tensor
"""
if depends is None:
depends = []
if mkl_fn_to_call is not None and mkl_fn_to_call(
sycl_queue, src, dst
):
# call pybind11 extension for unary function from OneMKL VM
return mkl_impl_fn(sycl_queue, src, dst, depends)
return unary_dp_impl_fn(src, dst, sycl_queue, depends)
super().__init__(
name,
result_type_resolver_fn,
_call_func,
docs,
acceptance_fn=acceptance_fn,
)
self.__name__ = "DPNPUnaryFunc"
def __call__(
self,
x,
out=None,
where=True,
order="K",
dtype=None,
subok=True,
**kwargs,
):
if kwargs:
raise NotImplementedError(
f"Requested function={self.name_} with kwargs={kwargs} "
"isn't currently supported."
)
elif where is not True:
raise NotImplementedError(
f"Requested function={self.name_} with where={where} "
"isn't currently supported."
)
elif subok is not True:
raise NotImplementedError(
f"Requested function={self.name_} with subok={subok} "
"isn't currently supported."
)
elif not dpnp.is_supported_array_type(x):
raise TypeError(
"Input array must be any of supported type, "
f"but got {type(x)}"
)
elif dtype is not None and out is not None:
raise TypeError(
f"Requested function={self.name_} only takes `out` or `dtype`"
"as an argument, but both were provided."
)
if order is None:
order = "K"
elif order in "afkcAFKC":
order = order.upper()
else:
raise ValueError(
"order must be one of 'C', 'F', 'A', or 'K' " f"(got '{order}')"
)
x_usm = dpnp.get_usm_ndarray(x)
if dtype is not None:
x_usm = dpt.astype(x_usm, dtype, copy=False)
out_usm = None if out is None else dpnp.get_usm_ndarray(out)
res_usm = super().__call__(x_usm, out=out_usm, order=order)
if out is not None and isinstance(out, dpnp_array):
return out
return dpnp_array._create_from_usm_ndarray(res_usm)
class DPNPBinaryFunc(BinaryElementwiseFunc):
"""
Class that implements binary element-wise functions.
Args:
name : {str}
Name of the unary function
result_type_resovle_fn : {callable}
Function that takes dtype of the input and returns the dtype of
the result if the implementation functions supports it, or
returns `None` otherwise..
binary_dp_impl_fn : {callable}
Data-parallel implementation function with signature
`impl_fn(src1: usm_ndarray, src2: usm_ndarray, dst: usm_ndarray,
sycl_queue: SyclQueue, depends: Optional[List[SyclEvent]])`
where the `src1` and `src2` are the argument arrays, `dst` is the
array to be populated with function values,
i.e. `dst=func(src1, src2)`.
The `impl_fn` is expected to return a 2-tuple of `SyclEvent`s.
The first event corresponds to data-management host tasks,
including lifetime management of argument Python objects to ensure
that their associated USM allocation is not freed before offloaded
computational tasks complete execution, while the second event
corresponds to computational tasks associated with function
evaluation.
docs : {str}
Documentation string for the unary function.
mkl_fn_to_call : {callable}
Check input arguments to answer if function from OneMKL VM library
can be used.
mkl_impl_fn : {callable}
Function from OneMKL VM library to call.
binary_inplace_fn : {callable}, optional
Data-parallel implementation function with signature
`impl_fn(src: usm_ndarray, dst: usm_ndarray,
sycl_queue: SyclQueue, depends: Optional[List[SyclEvent]])`
where the `src` is the argument array, `dst` is the
array to be populated with function values,
i.e. `dst=func(dst, src)`.
The `impl_fn` is expected to return a 2-tuple of `SyclEvent`s.
The first event corresponds to data-management host tasks,
including async lifetime management of Python arguments,
while the second event corresponds to computational tasks
associated with function evaluation.
acceptance_fn : {callable}, optional
Function to influence type promotion behavior of this binary
function. The function takes 6 arguments:
arg1_dtype - Data type of the first argument
arg2_dtype - Data type of the second argument
ret_buf1_dtype - Data type the first argument would be cast to
ret_buf2_dtype - Data type the second argument would be cast to
res_dtype - Data type of the output array with function values
sycl_dev - The :class:`dpctl.SyclDevice` where the function
evaluation is carried out.
The function is only called when both arguments of the binary
function require casting, e.g. both arguments of
`dpctl.tensor.logaddexp` are arrays with integral data type.
"""
def __init__(
self,
name,
result_type_resolver_fn,
binary_dp_impl_fn,
docs,
mkl_fn_to_call=None,
mkl_impl_fn=None,
binary_inplace_fn=None,
acceptance_fn=None,
):
def _call_func(src1, src2, dst, sycl_queue, depends=None):
"""
A callback to register in UnaryElementwiseFunc class of
dpctl.tensor
"""
if depends is None:
depends = []
if mkl_fn_to_call is not None and mkl_fn_to_call(
sycl_queue, src1, src2, dst
):
# call pybind11 extension for binary function from OneMKL VM
return mkl_impl_fn(sycl_queue, src1, src2, dst, depends)
return binary_dp_impl_fn(src1, src2, dst, sycl_queue, depends)
super().__init__(
name,
result_type_resolver_fn,
_call_func,
docs,
binary_inplace_fn,
acceptance_fn=acceptance_fn,
)
self.__name__ = "DPNPBinaryFunc"
def __call__(
self,
x1,
x2,
out=None,
where=True,
order="K",
dtype=None,
subok=True,
**kwargs,
):
dpnp.check_supported_arrays_type(
x1, x2, scalar_type=True, all_scalars=False
)
if kwargs:
raise NotImplementedError(
f"Requested function={self.name_} with kwargs={kwargs} "
"isn't currently supported."
)
elif where is not True:
raise NotImplementedError(
f"Requested function={self.name_} with where={where} "
"isn't currently supported."
)
elif subok is not True:
raise NotImplementedError(
f"Requested function={self.name_} with subok={subok} "
"isn't currently supported."
)
elif dtype is not None and out is not None:
raise TypeError(
f"Requested function={self.name_} only takes `out` or `dtype`"
"as an argument, but both were provided."
)
if order is None:
order = "K"
elif order in "afkcAFKC":
order = order.upper()
else:
raise ValueError(
"order must be one of 'C', 'F', 'A', or 'K' (got '{order}')"
)
x1_usm = dpnp.get_usm_ndarray_or_scalar(x1)
x2_usm = dpnp.get_usm_ndarray_or_scalar(x2)
if dtype is not None:
if dpnp.isscalar(x1):
x1_usm = dpt.asarray(
x1,
dtype=dtype,
sycl_queue=x2.sycl_queue,
usm_type=x2.usm_type,
)
x2_usm = dpt.astype(x2_usm, dtype, copy=False)
elif dpnp.isscalar(x2):
x1_usm = dpt.astype(x1_usm, dtype, copy=False)
x2_usm = dpt.asarray(
x2,
dtype=dtype,
sycl_queue=x1.sycl_queue,
usm_type=x1.usm_type,
)
else:
x1_usm = dpt.astype(x1_usm, dtype, copy=False)
x2_usm = dpt.astype(x2_usm, dtype, copy=False)
out_usm = None if out is None else dpnp.get_usm_ndarray(out)
res_usm = super().__call__(x1_usm, x2_usm, out=out_usm, order=order)
if out is not None and isinstance(out, dpnp_array):
return out
return dpnp_array._create_from_usm_ndarray(res_usm)
def outer(
self,
x1,
x2,
out=None,
where=True,
order="K",
dtype=None,
subok=True,
**kwargs,
):
"""
Apply the ufunc op to all pairs (a, b) with a in A and b in B.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray}
First input array.
x2 : {dpnp.ndarray, usm_ndarray}
Second input array.
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
order : {None, "C", "F", "A", "K"}, optional
Memory layout of the newly output array, Cannot be provided
together with `out`. Default: ``"K"``.
dtype : {None, dtype}, optional
If provided, the destination array will have this dtype. Cannot be
provided together with `out`. Default: ``None``.
Returns
-------
out : dpnp.ndarray
Output array. The data type of the returned array is determined by
the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See also
--------
:obj:`dpnp.outer` : A less powerful version of dpnp.multiply.outer
that ravels all inputs to 1D. This exists primarily
for compatibility with old code.
:obj:`dpnp.tensordot` : dpnp.tensordot(a, b, axes=((), ())) and
dpnp.multiply.outer(a, b) behave same for all
dimensions of a and b.
Examples
--------
>>> import dpnp as np
>>> A = np.array([1, 2, 3])
>>> B = np.array([4, 5, 6])
>>> np.multiply.outer(A, B)
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
A multi-dimensional example:
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[ 1, 2, 3, 4]],
[[ 2, 4, 6, 8]],
[[ 3, 6, 9, 12]]],
[[[ 4, 8, 12, 16]],
[[ 5, 10, 15, 20]],
[[ 6, 12, 18, 24]]]])
"""
dpnp.check_supported_arrays_type(
x1, x2, scalar_type=True, all_scalars=False
)
if dpnp.isscalar(x1) or dpnp.isscalar(x2):
_x1 = x1
_x2 = x2
else:
_x1 = x1[(Ellipsis,) + (None,) * x2.ndim]
_x2 = x2[(None,) * x1.ndim + (Ellipsis,)]
return self.__call__(
_x1,
_x2,
out=out,
where=where,
order=order,
dtype=dtype,
subok=subok,
**kwargs,
)
class DPNPAngle(DPNPUnaryFunc):
"""Class that implements dpnp.angle unary element-wise functions."""
def __init__(
self,
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
):
super().__init__(
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
)
def __call__(self, x, deg=False):
res = super().__call__(x)
if deg is True:
res *= 180 / dpnp.pi
return res
class DPNPReal(DPNPUnaryFunc):
"""Class that implements dpnp.real unary element-wise functions."""
def __init__(
self,
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
):
super().__init__(
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
)
def __call__(self, x):
if numpy.iscomplexobj(x):
return super().__call__(x)
return x
class DPNPRound(DPNPUnaryFunc):
"""Class that implements dpnp.round unary element-wise functions."""
def __init__(
self,
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
mkl_fn_to_call=None,
mkl_impl_fn=None,
):
super().__init__(
name,
result_type_resolver_fn,
unary_dp_impl_fn,
docs,
mkl_fn_to_call=mkl_fn_to_call,
mkl_impl_fn=mkl_impl_fn,
)
def __call__(self, x, decimals=0, out=None, dtype=None):
if decimals != 0:
x_usm = dpnp.get_usm_ndarray(x)
if dpnp.issubdtype(x_usm.dtype, dpnp.integer) and dtype is None:
dtype = x_usm.dtype
out_usm = None if out is None else dpnp.get_usm_ndarray(out)
x_usm = dpt.round(x_usm * 10**decimals, out=out_usm)
res_usm = dpt.divide(x_usm, 10**decimals, out=out_usm)
if dtype is not None:
res_usm = dpt.astype(res_usm, dtype, copy=False)
if out is not None and isinstance(out, dpnp_array):
return out
return dpnp_array._create_from_usm_ndarray(res_usm)
else:
return super().__call__(x, out=out, dtype=dtype)
def acceptance_fn_negative(arg_dtype, buf_dt, res_dt, sycl_dev):
# negative is not defined for boolean data type
if arg_dtype.char == "?":
raise TypeError(
"The `negative` function, the `-` operator, is not supported "
"for inputs of data type bool, use the `~` operator or the "
"`logical_not` function instead"
)
else:
return True
def acceptance_fn_positive(arg_dtype, buf_dt, res_dt, sycl_dev):
# positive is not defined for boolean data type
if arg_dtype.char == "?":
raise TypeError(
"The `positive` function is not supported for inputs of data type "
"bool"
)
else:
return True
def acceptance_fn_sign(arg_dtype, buf_dt, res_dt, sycl_dev):
# sign is not defined for boolean data type
if arg_dtype.char == "?":
raise TypeError(
"The `sign` function is not supported for inputs of data type bool"
)
else:
return True
def acceptance_fn_subtract(
arg1_dtype, arg2_dtype, buf1_dt, buf2_dt, res_dt, sycl_dev
):
# subtract is not defined for boolean data type
if arg1_dtype.char == "?" and arg2_dtype.char == "?":
raise TypeError(
"The `subtract` function, the `-` operator, is not supported "
"for inputs of data type bool, use the `^` operator, the "
"`bitwise_xor`, or the `logical_xor` function instead"
)
else:
return True