Source code for dpnp.dpnp_algo.dpnp_elementwise_common

# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2023-2024, Intel Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
# *****************************************************************************

import dpctl.tensor as dpt
import dpctl.tensor._tensor_elementwise_impl as ti
import numpy
from dpctl.tensor._elementwise_common import (
    BinaryElementwiseFunc,
    UnaryElementwiseFunc,
)

import dpnp
from dpnp.dpnp_array import dpnp_array

__all__ = [
    "acceptance_fn_negative",
    "acceptance_fn_positive",
    "acceptance_fn_sign",
    "acceptance_fn_subtract",
    "DPNPAngle",
    "DPNPBinaryFunc",
    "DPNPReal",
    "DPNPRound",
    "DPNPUnaryFunc",
    "ufunc",
    "unary_ufunc",
    "binary_ufunc",
]


[docs] class ufunc: """ ufunc() Functions that operate element by element on whole arrays. Calling ufuncs: `op(*x[, out], **kwargs)` Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. Parameters ---------- x : {dpnp.ndarray, usm_ndarray} One or two input arrays. out : {None, dpnp.ndarray, usm_ndarray}, optional Output array to populate. Array must have the correct shape and the expected data type. order : {None, "C", "F", "A", "K"}, optional Memory layout of the newly output array, Cannot be provided together with `out`. Default: ``"K"``. dtype : {None, dtype}, optional If provided, the destination array will have this dtype. Cannot be provided together with `out`. Default: ``None``. casting : {"no", "equiv", "safe", "same_kind", "unsafe"}, optional Controls what kind of data casting may occur. Cannot be provided together with `out`. Default: ``"same_kind"``. Limitations ----------- Keyword arguments `where` and `subok` are supported with their default values. Other keyword arguments is currently unsupported. Otherwise ``NotImplementedError`` exception will be raised. """ def __init__( self, name, nin, nout=1, func=None, docs=None, to_usm_astype=None, ): self.nin_ = nin self.nout_ = nout self.__name__ = name self.func = func self.__doc__ = docs self.to_usm_astype = to_usm_astype def __call__( self, *args, out=None, where=True, casting="same_kind", order="K", dtype=None, subok=True, **kwargs, ): dpnp.check_supported_arrays_type( *args, scalar_type=True, all_scalars=False ) if kwargs: raise NotImplementedError( f"Requested function={self.__name__} with kwargs={kwargs} " "isn't currently supported." ) if where is not True: raise NotImplementedError( f"Requested function={self.__name__} with where={where} " "isn't currently supported." ) if subok is not True: raise NotImplementedError( f"Requested function={self.__name__} with subok={subok} " "isn't currently supported." ) if (dtype is not None or casting != "same_kind") and out is not None: raise TypeError( f"Requested function={self.__name__} only takes `out` or " "`dtype` as an argument, but both were provided." ) if order is None: order = "K" elif order in "afkcAFKC": order = order.upper() else: raise ValueError( f"order must be one of 'C', 'F', 'A', or 'K' (got '{order}')" ) astype_usm_args = self.to_usm_astype(*args, dtype, casting) out_usm = None if out is None else dpnp.get_usm_ndarray(out) res_usm = self.func.__call__(*astype_usm_args, out=out_usm, order=order) if out is not None and isinstance(out, dpnp_array): return out return dpnp_array._create_from_usm_ndarray(res_usm) @property def nin(self): """ Returns the number of arguments treated as inputs. Examples -------- >>> import dpnp as np >>> np.add.nin 2 >>> np.multiply.nin 2 >>> np.power.nin 2 >>> np.exp.nin 1 """ return self.nin_ @property def nout(self): """ Returns the number of arguments treated as outputs. Examples -------- >>> import dpnp as np >>> np.add.nin 1 >>> np.multiply.nin 1 >>> np.power.nin 1 >>> np.exp.nin 1 """ return self.nout_ @property def nargs(self): """ Returns the number of arguments treated. Examples -------- >>> import dpnp as np >>> np.add.nin 3 >>> np.multiply.nin 3 >>> np.power.nin 3 >>> np.exp.nin 2 """ return self.nin_ + self.nout_ @property def types(self): """ Returns information about types supported by implementation function, using NumPy's character encoding for data types, e.g. Examples -------- >>> import dpnp as np >>> np.add.types ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D'] >>> np.multiply.types ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D'] >>> np.power.types ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d', 'FF->F', 'DD->D'] >>> np.exp.types ['e->e', 'f->f', 'd->d', 'F->F', 'D->D'] >>> np.remainder.types ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', 'ee->e', 'ff->f', 'dd->d'] """ return self.func.types @property def ntypes(self): """ The number of types. Examples -------- >>> import dpnp as np >>> np.add.ntypes 14 >>> np.multiply.ntypes 14 >>> np.power.ntypes 13 >>> np.exp.ntypes 5 >>> np.remainder.ntypes 11 """ return len(self.func.types)
[docs] def outer( self, x1, x2, out=None, where=True, order="K", dtype=None, subok=True, **kwargs, ): """ Apply the ufunc op to all pairs (a, b) with a in A and b in B. Parameters ---------- x1 : {dpnp.ndarray, usm_ndarray} First input array. x2 : {dpnp.ndarray, usm_ndarray} Second input array. out : {None, dpnp.ndarray, usm_ndarray}, optional Output array to populate. Array must have the correct shape and the expected data type. **kwargs For other keyword-only arguments, see the :obj:`dpnp.ufunc`. Returns ------- out : dpnp.ndarray Output array. The data type of the returned array is determined by the Type Promotion Rules. Limitations ----------- Parameters `where` and `subok` are supported with their default values. Keyword argument `kwargs` is currently unsupported. Otherwise ``NotImplementedError`` exception will be raised. See also -------- :obj:`dpnp.outer` : A less powerful version of dpnp.multiply.outer that ravels all inputs to 1D. This exists primarily for compatibility with old code. :obj:`dpnp.tensordot` : dpnp.tensordot(a, b, axes=((), ())) and dpnp.multiply.outer(a, b) behave same for all dimensions of a and b. Examples -------- >>> import dpnp as np >>> A = np.array([1, 2, 3]) >>> B = np.array([4, 5, 6]) >>> np.multiply.outer(A, B) array([[ 4, 5, 6], [ 8, 10, 12], [12, 15, 18]]) A multi-dimensional example: >>> A = np.array([[1, 2, 3], [4, 5, 6]]) >>> A.shape (2, 3) >>> B = np.array([[1, 2, 3, 4]]) >>> B.shape (1, 4) >>> C = np.multiply.outer(A, B) >>> C.shape; C (2, 3, 1, 4) array([[[[ 1, 2, 3, 4]], [[ 2, 4, 6, 8]], [[ 3, 6, 9, 12]]], [[[ 4, 8, 12, 16]], [[ 5, 10, 15, 20]], [[ 6, 12, 18, 24]]]]) """ dpnp.check_supported_arrays_type( x1, x2, scalar_type=True, all_scalars=False ) if dpnp.isscalar(x1) or dpnp.isscalar(x2): _x1 = x1 _x2 = x2 else: _x1 = x1[(Ellipsis,) + (None,) * x2.ndim] _x2 = x2[(None,) * x1.ndim + (Ellipsis,)] return self.__call__( _x1, _x2, out=out, where=where, order=order, dtype=dtype, subok=subok, **kwargs, )
class unary_ufunc(ufunc): def __init__( self, name, docs, acceptance_fn=False, ): def _to_usm_astype(x, dtype, casting): if dtype is not None: x = dpnp.astype(x, dtype=dtype, casting=casting, copy=False) x_usm = dpnp.get_usm_ndarray(x) return (x_usm,) _name = "_" + name dpt_result_type = getattr(ti, _name + "_result_type") dpt_impl_fn = getattr(ti, _name) func = UnaryElementwiseFunc( name, dpt_result_type, dpt_impl_fn, self.__doc__, acceptance_fn=acceptance_fn, ) super().__init__( name, nin=1, func=func, docs=docs, to_usm_astype=_to_usm_astype ) class binary_ufunc(ufunc): def __init__( self, name, docs, inplace=False, acceptance_fn=False, ): def _to_usm_astype(x1, x2, dtype, casting): if dtype is not None: if dpnp.isscalar(x1): x1 = dpnp.asarray(x1, dtype=dtype) x2 = dpnp.astype( x2, dtype=dtype, casting=casting, copy=False ) elif dpnp.isscalar(x2): x1 = dpnp.astype( x1, dtype=dtype, casting=casting, copy=False ) x2 = dpnp.asarray(x2, dtype=dtype) else: x1 = dpnp.astype( x1, dtype=dtype, casting=casting, copy=False ) x2 = dpnp.astype( x2, dtype=dtype, casting=casting, copy=False ) x1_usm = dpnp.get_usm_ndarray_or_scalar(x1) x2_usm = dpnp.get_usm_ndarray_or_scalar(x2) return x1_usm, x2_usm _name = "_" + name dpt_result_type = getattr(ti, _name + "_result_type") dpt_impl_fn = getattr(ti, _name) if inplace is True: binary_inplace_fn = getattr(ti, _name + "_inplace") else: binary_inplace_fn = None func = BinaryElementwiseFunc( name, dpt_result_type, dpt_impl_fn, self.__doc__, binary_inplace_fn, acceptance_fn=acceptance_fn, ) super().__init__( name, nin=2, func=func, docs=docs, to_usm_astype=_to_usm_astype ) class DPNPUnaryFunc(UnaryElementwiseFunc): """ Class that implements unary element-wise functions. Parameters ---------- name : {str} Name of the unary function result_type_resovler_fn : {callable} Function that takes dtype of the input and returns the dtype of the result if the implementation functions supports it, or returns `None` otherwise. unary_dp_impl_fn : {callable} Data-parallel implementation function with signature `impl_fn(src: usm_ndarray, dst: usm_ndarray, sycl_queue: SyclQueue, depends: Optional[List[SyclEvent]])` where the `src` is the argument array, `dst` is the array to be populated with function values, effectively evaluating `dst = func(src)`. The `impl_fn` is expected to return a 2-tuple of `SyclEvent`s. The first event corresponds to data-management host tasks, including lifetime management of argument Python objects to ensure that their associated USM allocation is not freed before offloaded computational tasks complete execution, while the second event corresponds to computational tasks associated with function evaluation. docs : {str} Documentation string for the unary function. mkl_fn_to_call : {callable} Check input arguments to answer if function from OneMKL VM library can be used. mkl_impl_fn : {callable} Function from OneMKL VM library to call. acceptance_fn : {callable}, optional Function to influence type promotion behavior of this unary function. The function takes 4 arguments: arg_dtype - Data type of the first argument buf_dtype - Data type the argument would be cast to res_dtype - Data type of the output array with function values sycl_dev - The :class:`dpctl.SyclDevice` where the function evaluation is carried out. The function is invoked when the argument of the unary function requires casting, e.g. the argument of `dpctl.tensor.log` is an array with integral data type. """ def __init__( self, name, result_type_resolver_fn, unary_dp_impl_fn, docs, mkl_fn_to_call=None, mkl_impl_fn=None, acceptance_fn=None, ): def _call_func(src, dst, sycl_queue, depends=None): """ A callback to register in UnaryElementwiseFunc class of dpctl.tensor """ if depends is None: depends = [] if mkl_fn_to_call is not None and mkl_fn_to_call( sycl_queue, src, dst ): # call pybind11 extension for unary function from OneMKL VM return mkl_impl_fn(sycl_queue, src, dst, depends) return unary_dp_impl_fn(src, dst, sycl_queue, depends) super().__init__( name, result_type_resolver_fn, _call_func, docs, acceptance_fn=acceptance_fn, ) self.__name__ = "DPNPUnaryFunc" def __call__( self, x, out=None, where=True, order="K", dtype=None, subok=True, **kwargs, ): if kwargs: raise NotImplementedError( f"Requested function={self.name_} with kwargs={kwargs} " "isn't currently supported." ) elif where is not True: raise NotImplementedError( f"Requested function={self.name_} with where={where} " "isn't currently supported." ) elif subok is not True: raise NotImplementedError( f"Requested function={self.name_} with subok={subok} " "isn't currently supported." ) elif not dpnp.is_supported_array_type(x): raise TypeError( "Input array must be any of supported type, " f"but got {type(x)}" ) elif dtype is not None and out is not None: raise TypeError( f"Requested function={self.name_} only takes `out` or `dtype`" "as an argument, but both were provided." ) if order is None: order = "K" elif order in "afkcAFKC": order = order.upper() else: raise ValueError( "order must be one of 'C', 'F', 'A', or 'K' " f"(got '{order}')" ) x_usm = dpnp.get_usm_ndarray(x) if dtype is not None: x_usm = dpt.astype(x_usm, dtype, copy=False) out_usm = None if out is None else dpnp.get_usm_ndarray(out) res_usm = super().__call__(x_usm, out=out_usm, order=order) if out is not None and isinstance(out, dpnp_array): return out return dpnp_array._create_from_usm_ndarray(res_usm) class DPNPBinaryFunc(BinaryElementwiseFunc): """ Class that implements binary element-wise functions. Args: name : {str} Name of the unary function result_type_resovle_fn : {callable} Function that takes dtype of the input and returns the dtype of the result if the implementation functions supports it, or returns `None` otherwise.. binary_dp_impl_fn : {callable} Data-parallel implementation function with signature `impl_fn(src1: usm_ndarray, src2: usm_ndarray, dst: usm_ndarray, sycl_queue: SyclQueue, depends: Optional[List[SyclEvent]])` where the `src1` and `src2` are the argument arrays, `dst` is the array to be populated with function values, i.e. `dst=func(src1, src2)`. The `impl_fn` is expected to return a 2-tuple of `SyclEvent`s. The first event corresponds to data-management host tasks, including lifetime management of argument Python objects to ensure that their associated USM allocation is not freed before offloaded computational tasks complete execution, while the second event corresponds to computational tasks associated with function evaluation. docs : {str} Documentation string for the unary function. mkl_fn_to_call : {callable} Check input arguments to answer if function from OneMKL VM library can be used. mkl_impl_fn : {callable} Function from OneMKL VM library to call. binary_inplace_fn : {callable}, optional Data-parallel implementation function with signature `impl_fn(src: usm_ndarray, dst: usm_ndarray, sycl_queue: SyclQueue, depends: Optional[List[SyclEvent]])` where the `src` is the argument array, `dst` is the array to be populated with function values, i.e. `dst=func(dst, src)`. The `impl_fn` is expected to return a 2-tuple of `SyclEvent`s. The first event corresponds to data-management host tasks, including async lifetime management of Python arguments, while the second event corresponds to computational tasks associated with function evaluation. acceptance_fn : {callable}, optional Function to influence type promotion behavior of this binary function. The function takes 6 arguments: arg1_dtype - Data type of the first argument arg2_dtype - Data type of the second argument ret_buf1_dtype - Data type the first argument would be cast to ret_buf2_dtype - Data type the second argument would be cast to res_dtype - Data type of the output array with function values sycl_dev - The :class:`dpctl.SyclDevice` where the function evaluation is carried out. The function is only called when both arguments of the binary function require casting, e.g. both arguments of `dpctl.tensor.logaddexp` are arrays with integral data type. """ def __init__( self, name, result_type_resolver_fn, binary_dp_impl_fn, docs, mkl_fn_to_call=None, mkl_impl_fn=None, binary_inplace_fn=None, acceptance_fn=None, ): def _call_func(src1, src2, dst, sycl_queue, depends=None): """ A callback to register in UnaryElementwiseFunc class of dpctl.tensor """ if depends is None: depends = [] if mkl_fn_to_call is not None and mkl_fn_to_call( sycl_queue, src1, src2, dst ): # call pybind11 extension for binary function from OneMKL VM return mkl_impl_fn(sycl_queue, src1, src2, dst, depends) return binary_dp_impl_fn(src1, src2, dst, sycl_queue, depends) super().__init__( name, result_type_resolver_fn, _call_func, docs, binary_inplace_fn, acceptance_fn=acceptance_fn, ) self.__name__ = "DPNPBinaryFunc" def __call__( self, x1, x2, out=None, where=True, order="K", dtype=None, subok=True, **kwargs, ): dpnp.check_supported_arrays_type( x1, x2, scalar_type=True, all_scalars=False ) if kwargs: raise NotImplementedError( f"Requested function={self.name_} with kwargs={kwargs} " "isn't currently supported." ) elif where is not True: raise NotImplementedError( f"Requested function={self.name_} with where={where} " "isn't currently supported." ) elif subok is not True: raise NotImplementedError( f"Requested function={self.name_} with subok={subok} " "isn't currently supported." ) elif dtype is not None and out is not None: raise TypeError( f"Requested function={self.name_} only takes `out` or `dtype`" "as an argument, but both were provided." ) if order is None: order = "K" elif order in "afkcAFKC": order = order.upper() else: raise ValueError( "order must be one of 'C', 'F', 'A', or 'K' (got '{order}')" ) x1_usm = dpnp.get_usm_ndarray_or_scalar(x1) x2_usm = dpnp.get_usm_ndarray_or_scalar(x2) if dtype is not None: if dpnp.isscalar(x1): x1_usm = dpt.asarray( x1, dtype=dtype, sycl_queue=x2.sycl_queue, usm_type=x2.usm_type, ) x2_usm = dpt.astype(x2_usm, dtype, copy=False) elif dpnp.isscalar(x2): x1_usm = dpt.astype(x1_usm, dtype, copy=False) x2_usm = dpt.asarray( x2, dtype=dtype, sycl_queue=x1.sycl_queue, usm_type=x1.usm_type, ) else: x1_usm = dpt.astype(x1_usm, dtype, copy=False) x2_usm = dpt.astype(x2_usm, dtype, copy=False) out_usm = None if out is None else dpnp.get_usm_ndarray(out) res_usm = super().__call__(x1_usm, x2_usm, out=out_usm, order=order) if out is not None and isinstance(out, dpnp_array): return out return dpnp_array._create_from_usm_ndarray(res_usm) def outer( self, x1, x2, out=None, where=True, order="K", dtype=None, subok=True, **kwargs, ): """ Apply the ufunc op to all pairs (a, b) with a in A and b in B. Parameters ---------- x1 : {dpnp.ndarray, usm_ndarray} First input array. x2 : {dpnp.ndarray, usm_ndarray} Second input array. out : {None, dpnp.ndarray, usm_ndarray}, optional Output array to populate. Array must have the correct shape and the expected data type. order : {None, "C", "F", "A", "K"}, optional Memory layout of the newly output array, Cannot be provided together with `out`. Default: ``"K"``. dtype : {None, dtype}, optional If provided, the destination array will have this dtype. Cannot be provided together with `out`. Default: ``None``. Returns ------- out : dpnp.ndarray Output array. The data type of the returned array is determined by the Type Promotion Rules. Limitations ----------- Parameters `where` and `subok` are supported with their default values. Keyword argument `kwargs` is currently unsupported. Otherwise ``NotImplementedError`` exception will be raised. See also -------- :obj:`dpnp.outer` : A less powerful version of dpnp.multiply.outer that ravels all inputs to 1D. This exists primarily for compatibility with old code. :obj:`dpnp.tensordot` : dpnp.tensordot(a, b, axes=((), ())) and dpnp.multiply.outer(a, b) behave same for all dimensions of a and b. Examples -------- >>> import dpnp as np >>> A = np.array([1, 2, 3]) >>> B = np.array([4, 5, 6]) >>> np.multiply.outer(A, B) array([[ 4, 5, 6], [ 8, 10, 12], [12, 15, 18]]) A multi-dimensional example: >>> A = np.array([[1, 2, 3], [4, 5, 6]]) >>> A.shape (2, 3) >>> B = np.array([[1, 2, 3, 4]]) >>> B.shape (1, 4) >>> C = np.multiply.outer(A, B) >>> C.shape; C (2, 3, 1, 4) array([[[[ 1, 2, 3, 4]], [[ 2, 4, 6, 8]], [[ 3, 6, 9, 12]]], [[[ 4, 8, 12, 16]], [[ 5, 10, 15, 20]], [[ 6, 12, 18, 24]]]]) """ dpnp.check_supported_arrays_type( x1, x2, scalar_type=True, all_scalars=False ) if dpnp.isscalar(x1) or dpnp.isscalar(x2): _x1 = x1 _x2 = x2 else: _x1 = x1[(Ellipsis,) + (None,) * x2.ndim] _x2 = x2[(None,) * x1.ndim + (Ellipsis,)] return self.__call__( _x1, _x2, out=out, where=where, order=order, dtype=dtype, subok=subok, **kwargs, ) class DPNPAngle(DPNPUnaryFunc): """Class that implements dpnp.angle unary element-wise functions.""" def __init__( self, name, result_type_resolver_fn, unary_dp_impl_fn, docs, ): super().__init__( name, result_type_resolver_fn, unary_dp_impl_fn, docs, ) def __call__(self, x, deg=False): res = super().__call__(x) if deg is True: res *= 180 / dpnp.pi return res class DPNPReal(DPNPUnaryFunc): """Class that implements dpnp.real unary element-wise functions.""" def __init__( self, name, result_type_resolver_fn, unary_dp_impl_fn, docs, ): super().__init__( name, result_type_resolver_fn, unary_dp_impl_fn, docs, ) def __call__(self, x): if numpy.iscomplexobj(x): return super().__call__(x) return x class DPNPRound(DPNPUnaryFunc): """Class that implements dpnp.round unary element-wise functions.""" def __init__( self, name, result_type_resolver_fn, unary_dp_impl_fn, docs, mkl_fn_to_call=None, mkl_impl_fn=None, ): super().__init__( name, result_type_resolver_fn, unary_dp_impl_fn, docs, mkl_fn_to_call=mkl_fn_to_call, mkl_impl_fn=mkl_impl_fn, ) def __call__(self, x, decimals=0, out=None, dtype=None): if decimals != 0: x_usm = dpnp.get_usm_ndarray(x) if dpnp.issubdtype(x_usm.dtype, dpnp.integer) and dtype is None: dtype = x_usm.dtype out_usm = None if out is None else dpnp.get_usm_ndarray(out) x_usm = dpt.round(x_usm * 10**decimals, out=out_usm) res_usm = dpt.divide(x_usm, 10**decimals, out=out_usm) if dtype is not None: res_usm = dpt.astype(res_usm, dtype, copy=False) if out is not None and isinstance(out, dpnp_array): return out return dpnp_array._create_from_usm_ndarray(res_usm) else: return super().__call__(x, out=out, dtype=dtype) def acceptance_fn_negative(arg_dtype, buf_dt, res_dt, sycl_dev): # negative is not defined for boolean data type if arg_dtype.char == "?": raise TypeError( "The `negative` function, the `-` operator, is not supported " "for inputs of data type bool, use the `~` operator or the " "`logical_not` function instead" ) else: return True def acceptance_fn_positive(arg_dtype, buf_dt, res_dt, sycl_dev): # positive is not defined for boolean data type if arg_dtype.char == "?": raise TypeError( "The `positive` function is not supported for inputs of data type " "bool" ) else: return True def acceptance_fn_sign(arg_dtype, buf_dt, res_dt, sycl_dev): # sign is not defined for boolean data type if arg_dtype.char == "?": raise TypeError( "The `sign` function is not supported for inputs of data type bool" ) else: return True def acceptance_fn_subtract( arg1_dtype, arg2_dtype, buf1_dt, buf2_dt, res_dt, sycl_dev ): # subtract is not defined for boolean data type if arg1_dtype.char == "?" and arg2_dtype.char == "?": raise TypeError( "The `subtract` function, the `-` operator, is not supported " "for inputs of data type bool, use the `^` operator, the " "`bitwise_xor`, or the `logical_xor` function instead" ) else: return True