dpnp.linalg.pinv
- dpnp.linalg.pinv(a, rcond=1e-15, hermitian=False)[source]
- Compute the (Moore-Penrose) pseudo-inverse of a matrix. - Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values. - For full documentation refer to - numpy.linalg.inv.- Parameters:
- a ((..., M, N) {dpnp.ndarray, usm_ndarray}) – Matrix or stack of matrices to be pseudo-inverted. 
- rcond ({float, dpnp.ndarray, usm_ndarray}, optional) – Cutoff for small singular values. Singular values less than or equal to - rcond * largest_singular_valueare set to zero. Broadcasts against the stack of matrices. Default:- 1e-15.
- hermitian (bool, optional) – If - True, a is assumed to be Hermitian (symmetric if real-valued), enabling a more efficient method for finding singular values. Default:- False.
 
- Returns:
- out – The pseudo-inverse of a. 
- Return type:
- (…, N, M) dpnp.ndarray 
 - Examples - The following example checks that - a * a+ * a == aand- a+ * a * a+ == a+:- >>> import dpnp as np >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) array([ True]) >>> np.allclose(B, np.dot(B, np.dot(a, B))) array([ True])