dpnp.linalg.inv

dpnp.linalg.inv(a)[source]

Compute the (multiplicative) inverse of a matrix.

Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]).

For full documentation refer to numpy.linalg.inv.

Parameters:

a ((..., M, M) {dpnp.ndarray, usm_ndarray}) – Matrix to be inverted.

Returns:

out – (Multiplicative) inverse of the matrix a.

Return type:

(…, M, M) dpnp.ndarray

Examples

>>> import dpnp as np
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = np.linalg.inv(a)
>>> np.allclose(np.dot(a, ainv), np.eye(2))
array([ True])
>>> np.allclose(np.dot(ainv, a), np.eye(2))
array([ True])

Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> np.linalg.inv(a) array([[[-2. , 1. ],

[ 1.5 , -0.5 ]],

[[-1.25, 0.75],

[ 0.75, -0.25]]])