pandas.core.window.Rolling.skew¶
Unbiased rolling skewness.
**kwargs Keyword arguments to be passed into func.
- return
Series or DataFrame Return type is determined by the caller.
Examples¶
import pandas as pd
from numba import njit
@njit
def series_rolling_skew():
series = pd.Series([4, 3, 5, 2, 6]) # Series of 4, 3, 5, 2, 6
out_series = series.rolling(3).skew()
return out_series # Expect series of NaN, NaN, 0.000000, 0.935220, -1.293343
print(series_rolling_skew())
$ python ./series/rolling/series_rolling_skew.py
0 NaN
1 NaN
2 0.000000
3 0.935220
4 -1.293343
dtype: float64
import pandas as pd
from numba import njit
@njit
def df_rolling_skew():
df = pd.DataFrame({'A': [4, 3, 5, 2, 6], 'B': [-4, -3, -5, -2, -6]})
out_df = df.rolling(3).skew()
# Expect DataFrame of
# {'A': [NaN, NaN, 0.000000, 0.935220, -1.293343],
# 'B': [NaN, NaN, 0.000000, -0.935220, 1.293343]}
return out_df
print(df_rolling_skew())
$ python ./dataframe/rolling/dataframe_rolling_skew.py
A B
0 NaN NaN
1 NaN NaN
2 0.000000 0.000000
3 0.935220 -0.935220
4 -1.293343 1.293343
See also
- Series.rolling
Calling object with a Series.
- DataFrame.rolling
Calling object with a DataFrame.
- Series.skew
Similar method for Series.
- DataFrame.skew
Similar method for DataFrame.